The One Hundred Layers Tiramisu:
Fully Convolutional DenseNets for
Semantic Segmentation

Simon Jegou , Michal Drozdzal, David Vazquez, Adriana Romero
Yoshua Bengio



Deep Neural Network

e Use a cascade of multiple layers of units for feature extraction. Each
successive layer uses the output from the previous layer as input.
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Deep Neural Network

» Regular Neural Nets don’t scale well to full images

o 32*32*3 (32 wide, 32 high, 3 color channels), so a single fully-connected neuron in a first hidden
layer of a regular Neural Network would have 32*32*3 = 3072 weights.

« we would almost certainly want to have several such neurons, so the parameters would add up
quickly! Clearly, this full connectivity is wasteful and the huge number of parameters would
quickly lead to overfitting.



Convolutional Neural Network

 convolutional neural network (CNN, or ConvNet) is a class of
deep artificial neural network that has successfully been applied to
analyzing visual imagery.
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Convolutional Neural Network

e connect each neuron to only a local region of the input volume. The
spatial extent of this connectivity Is a hyperparameter called
the receptive field of the neuron (equivalently this is the filter size).
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CONV
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Convolution

« Convolutional layers apply a convolution operation to the input,
passing the result to the next layer.

 Each convolutional neuron processes data only for its receptive field.
e http://cs231n.qgithub.io/convolutional-networks/
e hitps://github.com/vdumoulin/conv_arithmetic
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onvolution
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3D convolution
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1*1 Convolution

(btw, 1x1 convolution layers make perfect sense)
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Rectifier (ReLU)

* the rectifier is an activation function defined as the positive part of its
argument:

Flz) = a7 = max{}, z).

e where X IS the Input to a neuron.



Pooling

* Pooling Is a sample-based discretization process. The objective Is to
down-sample an input representation.

e Max pooling

 Average pooling
Single depth slice
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Batch Normalization

e Batch Normalization 1s a method to reduce internal covariate shift in
neural networks.

* We define Internal Covariate Shift as the change in the distribution of
network activations due to the change In network parameters during
training.

e https://machinelearning.wtf/terms/internal-covariate-shift/
e https://wiki.tum.de/display/lIfdv/Batch+Normalization
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Dropout

« Dropout Is a regularization technique for educing over
fitting In neural network by preventing complex co-adaptations on
training data.

e The term "dropout" refers to dropping out units.



Transpose convolution (De convolution)

https://github.com/vdumoulin/conv arithmetic

https://www.quora.com/What-is-the-difference-between-Deconvolution-Upsampling-Unpooling-
and-Convolutional-Sparse-Coding
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Abstract

The typical segmentation architecture is composed of :

« a downsampling path responsible for extracting coarse semantic
features.

e an upsampling path trained to recover the input image resolution at the
output of the model.

o optionally, a post-processing module.
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Abstract

e Densely Connected Convolutional Networks (DenseNets)

e https://arxiv.org/abs/1608.06993
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https://arxiv.org/abs/1608.06993

Abstract

achieve state-of-the-art results on urban scene benchmark datasets:

e CamVid is a dataset of fully segmented videos for urban scene
understanding.

e http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/
« (atech Is a geometric scene understanding dataset.
e http://www.cc.gatech.edu/cpl/projects/videogeometriccontext/
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Introduction
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Figure 2. Overall architecture of the proposed network. On top of the convolution network based on VGG 16-layer net, we put a multi-
layer deconvolution network to generate the accurate segmentation map of an input proposal. Given a feature representation obtained from
the convolution network, dense pixel-wise class prediction map is constructed through multiple series of unpooling, deconvolution and
rectification operations.
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Introduction

* Res net
e https://arxiv.org/abs/1512.03385

 Unet
e https://arxiv.org/abs/1505.04597
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Review of DensNet

* Densely Connected Convolutional Networks (DenseNets)

e https://arxiv.org/abs/1608.06993
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https://arxiv.org/abs/1608.06993

Introduction
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Fully Convolutional Dense net input

Layer

Batch Normalization

RelLU

3 x 3 Convolution

Dropout p = 0.2

Transition Down (TD)

Batch Normalization

RelLLU

1 x 1 Convolution

Dropout p = 0.2

\ Output

2 X 2 Max Pooling

Transition Up (TU)

3 X 3 Transposed Convolution
stride = 2

[l Dense Block Bl Convolutien
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Architecture

[nput, m =3

3 x 3 Convolution, m = 48

DB (4 layers) + TD, m = 112

DB (5 layers) + TD, m = 192

DB (7 layers) + TD, m = 304

DB (10 layers) + TD. m = 464

DB (12 layers) + TD, m = 656

DB (15 layers), m = 896

TU + DB (12 layers), m = 1088

TU + DB (10 layers), m = 816

TU + DB (7 layers), m = 578

TU + DB (5 layers), m = 384

TU + DB (4 layers), m = 256

1 x 1 Convolution, m = ¢

Softmax
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Soft max

K
i J— = ]
IT:I{I}J T H KL
Py
X : float32
Parameters: The activation (the summed, weighted input of a
neuron).

float32 where the sum of the row is 1 and each single
value is in [0, 1]

The output of the softmax function applied to the
activation.

Returns:



Heuniform

e hitps://arxiv.org/abs/1502.01852

e This leads to a zero-mean Gaussian distribution whose standard
deviation (std) Is /2 /n;.

« We use | to index a layer and n denoting number of layer connections.
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RMSprop

e http://ruder.io/optimizing-gradient-descent/index.html#rmsprop
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