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Alzheimer’s disease
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• Most common cause of dementia

• Progressive neurodegenerative disorder

• Dr. Alois Alzheimer first described the symptoms in 1901. 

Fig. Healthy brain and Alzheimer’s brain



Alzheimer’s disease
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• The major players-Tau Protein and Amyloid Plaques.

• The destructive accumulation starts at hippocampus.

Fig. Healthy brain and Alzheimer’s brain



• Over 135 million people worldwide by 2050

Alzheimer's disease
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Fig. Dementia statistics
Fig. Alzheimer’s disease funding

Source: usagainstalzheimers.org



• MR images of AD patients- cortical atrophy, and enlarged ventricles.

Magnetic Resonance Imaging (MRI)
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Source: Gachon Medical School, Korea

©Siemens AG 2011. All rights reserved



Table: Different phases of ADNI project

MR Scanner manufacturers: GE Medical Systems, Philips Medical Systems, Siemens

Datasets/Projects
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Projects 1.5TMRI 3T MRI DTI fMRI Weighted Image

ADNI-1 Yes Yes No No T1/T2/PD

ADNI-GO No Yes No No T1/T2/PD

ADNI-2 No Yes No No T1/T2/PD

ADNI-3 No Yes No No T1/T2/PD



How does the performance result of AD/MCI detection/classification vary

• Across two MR imaging field strengths?

• Across different scanner manufacturers and its models?

• Across two supervised algorithms (RBF-SVM and ELM)?

Research Questions
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How do affected regions due to progression of AD/MCI vary

• Across two MR imaging field strengths?

• Across different scanner manufacturers and its models?

Research Questions
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Primarily 3 types of features from MRI

• Voxel-based features

• Vertex based features

• Pre-defined ROI-based features

Background Studies
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Voxel based features

• Voxels of the whole brain are partitioned into three different tissues (GM, WM, and CSF).

• ROI based methods to overcome dimensionality problem

― VBM (Voxel-based morphometry): measures brain volume 

― DBM (Deformation based morphometry): measures the deformation field

― TBM (Tensor based morphometry): measures jacobian of deformation

• Multi-atlas based method to overcome bias, outperforms single atlas based method.

Background Studies
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Vertex based features

• Cortical thickness

• Cortical Surface area

Pre-determined ROI-based features

• Medial temporal lobe, successively affects the entorhinal cortex, hippocampus, limbic system, and 

neocortical areas

Background Studies
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Background Studies
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Study Type of Features Dataset Category of features Classifier Classification accuracy

AD/CN AD/MCI CN/MCI sMCI/pMCI

(Liu et al. [70] ) M-ROI AD-97

pMCI-117

sMCI-117

CN-128

Tissue density map

based

SVM 92.51 - - 78.88

(Misra et al. [92]) S-ROI AD-56

pMCI-27

sMCI-76

CN-66

Tissue density map

based

SVM - - - 81.50

(Salvatoreet al. [93] ) SUFR AD-137

pMCI-76

sMCI-134

CN-162

Tissue density map

based

SVM 76.00 - 72.00 66.00

(Li et al. [74]) All vertices MCI-24

CN-26

Cortical Surface based SVM - - 80 -

(Wee et al., [36]) Atlas AD-198

pMCI-89

sMCI-111

CN-200

Cortical Surface based Multi-kernel SVM 92.35 79.24 83.75 75.05

Lama et al. [94] Cortical thickness and

surface area

AD-70

MCI-74

CN-70

Cortical Surface-based Regularized ELM 76.61 - - -

Table: A summary of classification accuracy of different classifiers using different feature type



Table: A summary of classification accuracy of different classifiers using different feature type

Background Studies

Faculty of Science and Engineering | Department of Computing 14

Study Type of Features Dataset Category of features Classifier Classification accuracy

AD/CN AD/MCI CN/MCI sMCI/pMCI

(Sorensen et al. [95]) Hippocampus AD-101

MCI-233

pMCI-93

sMCI-140

CN-169

Pre-defined ROI based SVM 91.20 - 76.40 74.20

(Chincarini et al. [96]) Biologically selected

regions

AD-144

pMCI-136

sMCI-166

CN-189

Pre-defined ROI based SVM 97.00 92.00 74.00

Zu et al. [97] Feature concatenation AD-51

pMCI-43

sMCI-56

CN-52

Multimodal (MRI and

FDG-PET)

Multi-kernel

SVM

95.95 80.26 - 69.78

Alam et al. [98] MRI bases texture AD-86

CN-86

Texture Twin SVM 92.65 - - -



• Some robust methods are proposed – increasing reliability across field strengths.

• The MRI data integration- suitable regression based correction.

• Impact of different protocols- minor if proper pre-processing steps followed. 

Background Studies
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Proposed Methods
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Preprocessing
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Figure: Schematic diagram of the proposed approach



Proposed method
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Fig: Schematic diagram of MALF based segmentation
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Proposed method
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Figure: MALF based segmentation of four different subjects over four scanner models



Proposed method

Faculty of Science and Engineering | Department of Computing 19

Figure: MALF based segmentation of a subject image at two granularity levels

• Regarding segmentation accuracy, MALF is superior or comparable to other fusion based 

methods.

• The number of brain structures is 8, 19, 54, 136, and 282 for each of the five granularity 

levels, respectively



Proposed method
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Figure: FreeSurfer based subcortical segmentation of four different subjects over four scanner models

• The brain volume is segmented into 40 labels



Proposed method
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Feature Selection approaches

• Filter based approach: two sample t-test

• Wrapper based approach: Support Vector Machine Recursive Feature Elimination



Supervised Algorithms
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Figure: Linear Support Vector Machine

Support Vector Machine



Supervised Algorithms
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Extreme Learning Machine

Figure: ELM SLFN approach



Data
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Classification sets Model of the scanners Dataset for MALF Dataset for FreeSurfer

AD vs CN

GE Signa HDX AD=40, CN=40 AD=41, CN=41

GE Signa Excite AD=74, CN=74 AD=60, CN=60

Siemens Symphony AD=35, CN=35 AD=19, CN=19

Siemens TrioTim AD=67, CN=67 AD=54, CN=54

AD vs MCI

GE Signa HDX AD=51, MCI=51 AD=40, MCI=40

GE Signa Excite AD=72, MCI=72 AD=60, MCI=60

Siemens Symphony AD=35, MCI=35 AD=34, MCI=34

Siemens TrioTim AD=67, MCI=67 AD=54, MCI=54

CN vs MCI

GE Signa HDX CN=40, MCI=40 CN=40, MCI=40

GE Signa Excite CN=72, MCI=72 CN=62, MCI=62

Siemens Symphony CN=42, MCI=42 CN=19, MCI=19

Siemens TrioTim CN=75, MCI=75 CN=70, MCI=70

Table: Selected data for MALF and FreeSurfer based approach



Preprocessing
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• Gradwarp: Corrects the image geometry which is distorted by the scanner. This gradient non-

linearity distorts the image geometry. Gradwarp corrects this distortion.

• B1 non-uniformity: Uses calibration of time-varying radio frequency field (B1) parameters to

correct the artifacts of an image. This artifact, the non-uniformity in image intensity occurs when

the degree of uniformity at head coil and receiver coil varies during Radio Frequency(RF)

transmission.

• N3: This method normalizes the non-uniform intensities, sharpening the histogram of an image.

• A method applied to avoid double dipping



Validation: 5-cross-validation with running the program 30 times

Performance Evaluation

Faculty of Science and Engineering | Department of Computing 26

2. Sensitivity =
TP

TP+FN
(Recall/TPR)  

1. Accuracy =
TP+TN

TP+TN+FP+FN

3. Specificity =
T𝑁

TN+FP
(𝑇𝑁𝑅)

Indicator Explanation

TP True Positive, anticipating an AD to AD

FP False Positive, anticipating HC to AD

TN True Negative, anticipating an HC to HC

FN False Negative, anticipating an AD to HC

4. Precision =
T𝑃

TP+FP
(PPV)

6. 𝐺𝑚𝑒𝑎𝑛 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

5. 𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦



Result and Discussion
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(a) AD vs CN 

 

(b) AD vs MCI 

 

(c) CN vs MCI 

 

 

 

Figure: Performance accuracy of MALF based method using RBF-SVM over four different protocols



Result and Discussion
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Figure: Performance result of MALF based features at granularity level 5 using RBF-SVM over four different protocols

 

(a) AD vs CN 

 

(b) AD vs MCI 

 

(c) CN vs MCI 

 

 

 



Result and Discussion
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Figure: Performance accuracy of MALF based method using ELM over four different protocols

 

(a) AD vs CN 

 

(b) AD vs MCI 

 

(c) CN vs MCI 

 

 

 



Result and Discussion
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Figure: Performance result of MALF based features at granularity level 5 using ELM over four different protocols

 

(a) AD vs CN 

 

(b) AD vs MCI 

 

(c) CN vs MCI 

 

 

 

 



Result and Discussion
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Figure: Comparison of ELM and SVM at granularity level 5 of MALF based method

 

(a) AD vs CN 

 

(b) AD vs MCI 

 

(c) CN vs MCI 

 

 

 



Result and Discussion
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Figure: Performance result of MALF based features at granularity level 5 using RBF-SVM over four different protocols (AD/CN)



Result and Discussion
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Figure: Performance result of MALF based features at granularity level 5 using ELM over four different protocols (AD/CN)



Result and Discussion
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Figure: Performance result of MALF based features at granularity level 5 using RBF-SVM over four different protocols (AD/MCI)



Result and Discussion
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Figure: Performance result of MALF based features at granularity level 5 using ELM over four different protocols (AD/MCI)



Result and Discussion
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Figure: Performance result of MALF based features at granularity level 5 using RBF-SVM over four different protocols (CN/MCI)



Result and Discussion
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Figure: Performance result of MALF based features at granularity level 5 using ELM over four different protocols (CN/MCI)



Result and Discussion

Faculty of Science and Engineering | Department of Computing 38

Figure: Performance result of FreeSurfer based features using RBF-SVM over four different protocols (AD/CN, AD/MCI)



Result and Discussion
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Table: Performance result of FreeSurfer based features using RBF-SVM over four different protocols (CN/MCI)



Result and Discussion
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Figure: Performance result of FreeSurfer based features using ELM over four different protocols (AD/CN, AD/MCI)



Result and Discussion
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Figure: Performance result of FreeSurfer based features using ELM over four different protocols (CN/MCI)



Result and Discussion
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Figure: Performance result of FreeSurfer based method using RBF-SVM over four difference protocols

 

(a) AD vs CN 

 

(b) AD vs MCI 

 

(c) CN vs MCI 
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Figure: Performance result of FreeSurfer based method using ELM over four difference protocols

 

(a) AD vs CN 

 

(b) AD vs MCI 

 

(c) CN vs MCI 

 

 

 



Result and Discussion
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Figure:  Ranking of MALF based features at granularity level 3 while classifying AD/CN

 

(a) Signa HDX 

 

(b) Signa Excite 

 

(c) Siemens Symphony 

 

(d) Siemens TrioTim 
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Figure:  Ranking of MALF based features at granularity level 3 while classifying AD/MCI

 

(a) Signa HDX 

 

(b) Signa Excite 

 

(c) Siemens Symphony 

 

(d) Siemens TrioTim 
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Figure:  Ranking of MALF based features at granularity level 3 while classifying CN/MCI

 

(a) Signa HDX 

 

(b) Signa Excite 

 

(c) Siemens Symphony 

 

(d) Siemens TrioTim 
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Figure:  Ranking of FreeSurfer based features while classifying AD/CN

 

(a) Signa HDX 

 

(b) Signa Excite 

 

(c) Siemens Symphony 

 

(d) Siemens TrioTim 
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Figure:  Ranking of FreeSurfer based features while classifying AD/MCI

 

(a) Signa HDX 

 

(b) Signa Excite 

 

(c) Siemens Symphony 

 

(d) Siemens TrioTim 
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Figure:  Ranking of FreeSurfer based features while classifying CN/MCI

 

(a) Signa HDX 

 

(b) Signa Excite 

 

(c) Siemens Symphony 

 

(d) Siemens TrioTim 

 

 



• Higher granularity level provides better classification performance across the protocols

• TrioTim performs better for AD/MCI

• No superiority of one classifier over the other.  

• Classification performance varies across four different protocols

• Ranking order of different brain structures/regions varies across different protocols

Conclusion
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Thank You!

Question & Answer


