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Abstract

Propose a coarse-to-fine segmentation strategy.

Segment endorectal coil prostate images and non-endorectal coil prostate images
separately.

present a registration-based coarse segmentation.

Train deep neural networks as pixel-based classifier to predict whether the pixel in
the potential boundary region is prostate pixel or not.

A boundary refinement is used to eliminate the outlier and smooth the boundary.



Introduction

® 220,800 men were diagnosed with prostate cancer in the United States in 2015.

® Magnetic resonance (MR) imaging, due to its superior spatial resolution and tissue
contrast, is the main imaging modality used to evaluate the prostate gland.

® The challenges mainly relate to the variability in size/shape/contours of the gland,
heterogeneity in signal intensity around endorectal coils (ERCs), imaging artifacts
and low contrast between the gland and adjacent structures.




Introduction

® Two contribution

® First, we show that the use of pre-trained VGG-19 can alleviate overfitting and transfer
the knowledge about image representation learned on the ImageNet dataset to
characterizing prostate images.

® Second, the experimental results demonstrate the use of ensemble learning can
substantially improve the performance of prostate segmentation.



Introduction
¢ Dataset
® Prostate MR Image Segmentation Challenge 2012 (PROMISE12).
® https://promisel2.grand-challenge.org/

® SPIE-AAPM-NCI PROSTATEX Classification Challenge 2017 (PROSTATEX17)
datasets.

® https://wiki.cancerimagingarchive.net/display/Public/SPIE-AAPM-
NCI+PROSTATEx+Challenges



https://promise12.grand-challenge.org/
https://wiki.cancerimagingarchive.net/display/Public/SPIE-AAPM-NCI+PROSTATEx+Challenges
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Voxel value normalization

®  Uniform voxel size

® 0.65x0.65%x15mm3
® The re-slicing procedure in the Statistical Parametric Mapping (SPM) software.
® hittps://www.sciencedirect.com/topics/neuroscience/statistical-parametric-mapping

® Normalizing voxel values

® non-ERCs
°* ERC


https://www.sciencedirect.com/topics/neuroscience/statistical-parametric-mapping

Voxel value normalization



Voxel value normalization

* non-ERC Equation 1
{ 1255 * (Iy — Imin)/ (Imax — I'min)
" 1255
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Voxel value normalization

°* ERC
® Poisson image editing
® https://dl.acm.org/citation.cfm?doid=1201775.882269



https://dl.acm.org/citation.cfm?doid=1201775.882269

Voxel value normalization

® Poisson image editing
® It is a seamless editing and cloning tool.
® Cloning allows the user to remove and add objects seamlessly.

® This approach is based on Poisson partial differential equation and Dirichlet boundary
condition which specifies the Laplacian of the unknown function over domain of interest.
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Voxel value normalization

® Step 1: The region near the ERC that contains spikes was extracted by a threshold.
® Step 2: The voxel value normalization problem was converted into seeking an adjusted image f: Q—R

® Q1s spike region
® f: Q—R adjusted image intensity Equation 2

® R set of real number

® R? is two dimensional real number vector space
® g(X) = (I -G * I)(x) is the high pass filtered image Vif=Vig
By minimization of equation 2 is the solution for Poisson equation

Equation 3

® f=1o0n the boundary of Q E(f)=min | |V f - Vg|%dx,
2
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Voxel value normalization

® Step 3: Voxel values in the spike region were replaced by the corresponding
values on the adjusted image f.

® Step 4: The spike suppressed image Is applied to equation 1 to further
normalize the voxel values.

Fig. 2. MR images, using the ERC, showing: (a) the transaxial image, (b) detected spike region and (c) result from voxel value normalization.




Atlas-based coarse segmentation

The coarse segmentation of the gland was achieved via an atlas-based joint registration comparison analysis.
® S:target image
® I;: training MR scan
® L;: corresponding ground truth

The deformable registration via attribute matching and mutual- saliency weighting (DRAMMS) applied for
registration to estimate a nonlinear transformation T that maps the training scan I; to the target scan S.

The estimated transformation T is applied to the ground truth L;, and thus generates a prostate atlas A(S).
Finally probabilistic atlas is constructed by averaging all atlases.

Equation4 A" =

N

(5)
2 AT
i=1

b | —
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Atlas-based coarse segmentation
P g

Single individual atlas Raw image Segmented image

IND: Segmentation using a single individual atlas.
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SIM: Segmentation using the “most similar™ individual atlas.
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Shape averaging Average atlas

AVG: Segmentation using an average shape atlas.
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Multiple segmentations

MUL: Independent segmentation using multiple individual atlases with decision

fusion.
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Atlas-based coarse segmentation

The target scan was partitioned into positive, boundary, and negative volumes by applying a low
threshold 0.25 and a high threshold 0.75 to the probabilistic atlas.

(a) Estimate
transform

(b) Apply
transform

Pre-processed image

(¢) Fusion &
Threshold

Coarse segmentation result

Atlas image Ground truth

Fig. 3. Outline of atlas-based coarse prostate segmentation. (For interpretation of the references to color in this figure, the reader is referred to the web version of this
article.)



Ensemble DCNN-based fine segmentation

® The fine segmentation step further classifies each voxel in the boundary
volume into prostate or non-prostate using the ensemble DCNN classifier.

® Fine segmentation is performed on a slice-by-slice basis from the axial view.



VGG-19

16 convolutional layers
¢ 3*3 kernels

3 fully connected layers
® 4096, 4096 and 1000 neurons

® 5 max pooling layers
¢ 2*2receptive fields
®* ReLU
® Number of kernels from 64 to 512
® Dropout= 0.5 in fully connected layers
Softmax- loss layer

Previously trained by ImageNet
¢ a 1000-category natural image database

7] 12x12x256

L—

Fig. 4. Architecture of the VGG-19 model used for this study.

Ensemble DCNN-based fine segmentation

1x1x512

1x1x1024  1x]1%2

Convolution + RELU
Max pooling

Fully connected + RELU
Softmax

Global average pooling

18



Ensemble DCNN-based fine segmentation

® Adapt VGG-19 for prostate segmentation

® Randomly selected two neurons in the last fully connected layer and removed other
output neurons and the weights attached to them.

® Fine-tuned by using image patches extracted from the training studies.

® A boundary region was defined as the difference between the dilation and erosion of the
ground truth slice using a disk whose radius was 20 pixels.

® Seed pixels were sampled with a 5 x 5 sliding window with a stride of 5.

® Extracted 48 x 48 image patch cantered in seed pixel.
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Ensemble DCNN-b

ased fine segmentation

Fig. 5. Prostate patches (green) and non-prostate patches (blue) on a training slice.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Ensemble DCNN-based fine segmentation

Learning rate to 0.00001
Batch size to 100
7 individual VGG-19 models

Ensemble prediction

Patch extraction

Coarse segmentation result /) Segmentation result
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Fig. 6. Diagram for ensemble DCNN-based fine segmentation. (For interpretation of the references to color in this figure, the reader is referred to the web version of this
article.)



Boundary Refinement

® This process included 3 x 3 median filtering.
® First calculated the distances between consecutive boundary points and the centroid.

® Then removed 10% boundary points whose distance was most different from the mean
distance.

® Finally fitted a cubic B-spline to the remaining boundary points to obtain the refined
segmentation.
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Experiments and results

Data sets

® PROMISE12- 50 volumes for training and 30 volumes for testing.

Table 1

Details of the dataset acquisition protocols.
Center Field strength  ERC  Resolution Manufacturer
Hk 1.5 Y 0.625/3.6 Siemens
BIDMC 3 Y 0.25/2.2-3 GE
UCL 1.5/3 N 0.325-0.625/3-3.6 Slemens
RUMNMC 3 N 0.5-0.75/3.6-4.0 Siemens

® The PROSTATEXx17 database has 204 training MR.
®  T2- weighted
¢ Kitrans

Apparent Diffusion coefficient Images
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Experiments and results

HK: 1.5T with ERCI BIDMC: 3.0T with ERC UCL: 3.0T without ERC RUNMC: 3.0T without ERC

Fig. 7. Example image slices from PROMIS 12 dataset (left two scans with ERC; right: two scans without ERC).

Fig. 8. Example image slices from the PROSTATEx dataset.
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Experiments and results

® Experiment setting and evaluations

® Four-fold cross-validation (each fold has ERC and non-ERC images)
¢ Evaluation
* Dice Similarity Coefficient (DSC) DX.Yy) = 2X0Y]
® DSCranges fromOto 1 X]+ 1Y}
® a higher value representing a more accurate segmentation result

RVD(X.Y) =100 — -1
® Relative Volume Difference (RvVD) Y : ( )

® A positive RVD reflects under-segmentation
® Anegative RVD reflects over-segmentation
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Experiments and results

" Evaluation

° A B Di ABD
verage Boundary Distance ( ) ABD(X. +Y,) ﬁ (Z min ||x — y|| +
S S

® 95% Hausdorff Distance (95%HD)
* Hausdorff Distance (HD) HDasym(Xs. Ys) = max(min [|x — y||)

® ABD and HD are classical shape distance-based evaluation metrics

me |x — yl|

ve¥s

)

26



Results

Fig. 9. ERC segmentation results with our algorithm; obtained boundaries are highlighted in green; the ground truth is outlined in red. (For interpretation of the references
to color in this figure legend. the reader is referred to the web version of this article.
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Results

Fig. 10. Non-ERC segmentation results of our algorithm: obtained boundaries are highlighted in green; the ground truth is outlined in red. (For interpretation of the refer
ences to color in this figure legend, the reader is referred to the web version of this article.)
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Table 2

Results

Mean + standard deviation of guantitative results for segmentations obtained by different algorithms.

Algorithm DSC RVD(%) ABD(mm) HD{mm) 95%HD(mm)
3D AAM (one shape model) [54] 0.784 + 0.120 [ / 7320+ 4910 [

3D AAM (two shape model) [54] 0.810+ 0.120 / / 6.430+ 4.630 7.300+ 4.900
Atlas fusion (local atlases and patch weighting) [55] 0.847+ 0.044 i / [
Probabilistic ASM [56] 0.860 + 0.006 / 1.600+ 0.630 | 9510+ 2.730
Automated AAM [37] 0.880+ 0.030 | / 4170+ 1.350 |

Our algorithm 0910 + 0.036 4.674+ 9.401 1583+ 0441 2813+ 1.292 4579+ 1.791
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Results

Fig. 11. Segmentation results using our approach on examples from the PROSTATEx dataset. (For interpretation of the references to color in this figure, the reader is referred
to the web version of this article.)



Results

Table 3
Comparison of segmentation performance with different patch sizes.
Patch size  DSC RVD(#%) ABD(mm) HD{mm) 95%HD(mm)
48 0.887 + 0.041 6.367 £ 13.745 1.715 + 0.356 3788+ 1.153 5.736+ 1.574
56 0.882 £+ 0.042 5.927 £ 15.658 1.883 £ 0.400 5.043 £ 1.260 7579+ 1.791
64 0.867 £ 0.054 9174+ 21419 2.056+ 0.520 6.352 £ 1450 8991+ 1.626
Table 4
Comparison of segmentation performance with different ensemble numbers.
Ensemble number  DSC RVD( %) ABD(mm) HD(mm) 95%HD({mm) Total training time(h)
3 0.891+ 0.040 6.300 £ 12.666 1.700 £ 0.354 3.7154+ 1.232 4890+ 1733 24
5 0.903 £ 0.034 5410+ 12.700 1.667 £ 0.335 3.295+ 1122 4612+ 1.593 40
7 0.910 = 0.036 4.674 - 9407 1.583 + 0.441 2813+ 1.292 4579+ 1.77M 56
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Results

® Pre-trained versus fully-trained DCNN
® Replaced the pre-trained VGG-19 model with the LeNet-5 model

® fully-trained by using extracted image patches

6x6x512

3x3x512
Ix1x1024 1x1x%2
1]

Dﬁ?

1x1x512

Max pooling

EE Convolution + RELU
|

Fully connected + RELU

Softmax

E[ Global average pooling

Fig. 12. Architecture of the LeNet-5 model.
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Results

® Pre-trained versus fully-trained DCNN

Table 5
Mean + standard deviation of quantitative results for segmentations obtained by different algorithms.
Algorithm DSC RVD(%) ABD(mm) HD(mm) 95%HD(mm)
Single model LeNet-5 0.859 4+ 0.065 10,079 £ 14.695 1.858 + 0.626 5320+ 1.612 72514+ 2.756
VGG-19 0.887 £ 0.041 6.367 £ 13.745 1.715 £ 0.356 3788+ 1153 5736+ 1.574
Ensemble model LeNet-5  0.877x 0.072 7320+ 10.268 1.753 £ 0.687 5.071 £ 1.698 7.091 £ 2.862
VGG-19 0910+ 0.036 4.674 - 9401 1.583 + 0.441 2813+ 1.292 4579+ 1.791
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Results

® Computational Complexity

Table 6

Details and times for our approach.

Parameter

Value

Registration

Other work

Algorithm

Machine

Time

Platform:
Language:
Libraries:
Multi-threaded:
User interaction:
CPU:

CPU clock speed:
Machine memory:
GPU:

Normalization and enhancement:

Registration:

Label fusion:

Off-line DCNNs training:
DCNNs prediction:
Boundary refinement:
Total segmentation:

Mac O5 X 10.10 system
C++

DRAMMS

None

None

Intel core i5

CPU 1.4 GHz

8 GB

None

= 1s (per study)

Ubuntu 14.04 64 bit system
MATLAB 2016 b, Python
Keras, Tensorflow

None

None

Intel core i7-4790

CPU 3.2 GHz

32 GB

Nvidia GTX titan X

30-40 min (per study registration by 10 atlas)

~ 1 s (per study)

3.5 h (randomly initialization)

= 2 min (per study)
=1 5 (per study)
= 40 min (per study)

2 h (pre-trained weights)
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Conclusion

Present an automated coarse-to-fine segmentation.
The coarse segmentation was achieved by using a probabilistic atlas.
The fine segmentation was done using a cohort of trained DCNNS.

Results suggest that ensemble DCNNs initialized with pre-trained weights
substantially improve segmentation accuracy.
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