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Motivation

.Existing Systemes:
~Text Based Image Retrieval
~Content Based Image Retrieval

-Most of the research in image retrieval has focussed on the
task of instance-level image retrieval, where the goal is to

retrieve images that contain the same object instance as the
guery image.

In this paper, authors

~Move beyond instance-level retrieval and consider the task of
semantic image retrieval in complex scenes.



Problem

.CBIR: Given a query image, retrieve all images relevant to
that query within a potentially large database of images.

.Existing methods focused on retrieving the exact same
Instance as in the query image, such as particular object.




Overall Goal: Semantic Retrieval

Training set {(images + human captions)
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Contributions

Validated that the task of semantic image retrieval can be well-defined
(because it is also highly subjective).

.Showed that a similarit.?/ function based on captions produced by
human annotators, available at the training time, constitutes a good
computable surrogate of the true semantic similarity.

.Developed a model that leverages the similarity between human-
generated captions, to learn how to embed images in a semantic
space, where the similarity between embedded images is related to
their semantic similarity.

Developed a model (extending previous one), that leverages the
mage captions explicitly and learns a joint embedding for the visual
and textual representations.




Related Work

Zitnick and Parikh showed that image retrieval can be
greatly improved when detailed semantics is available.

Jenny just threw the beach ball angrily at Mike while the
dog watches them both.
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Related Work...

.Image Captioning as a retrieval problem

—First retrieve similar images, and then transfer caption annotations from the
retrieved images to the query images.

haming Image Description as a Ranking Task: Our data set of 8,000 Flickr images with 5 crowd-sourced captions
Data, Models and Evaluation Metrics '
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Related Work...

Joint embedding of image and text

~Many tasks require to jointly leverage images and natural
text, such as zero shot learning, language generation, multi-
media retrieval, image captioning, and Visual Question
Answering.

~-Common Solution: To build a joint embedding for textual
and visual cues and to compare the modalities directly in
that space.



Related Work: Joint embedding of image and text

.Deep Canonical Correlation Analysis (DCCA)

Deep Correlation for Matching Images and Text In contrast to hand-crafted objectives, deep CCA
(DCCA) [1] optimises the CCA objective in the deep learn-

ing framework. It uses the insight that the total correlation
Fei Yan  Krystian Mikolajczyk sought in CCA can be maximised by optimising a matrix
Centre for Visi.nn, Speech and Signal P::Dcessing, University of Surrey trace norm, and the gradient of the trace norm with respect
Guildford, Surrey, United Kingdom. GU2 7XH to features of the two modalities can be computed. This
{f.yan, k.mikolajezyk}@surrey.ac.uk allows propagating the gradient down in a deep neural net-
work, achieving end-to-end learning.
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P@1 P@5 MAP P@1 P@5 MAP
structured SVM [48] 0.086 0.070  0.050 0.035 0029  0.035
DCCA 0.302 0.114  0.426 0.295 0.120 0415

Table 4. Performance on [APR TC-12.



Related Work: Joint embedding of image and text

-WS-ABIE: Web Scale Annotation By Image Embedding

WSABIE: Scaling Up To Large Vocabulary Image Annotation

Table 8: Examples of the top 10 annotations of three com-
pared approaches: PAMIR'? | One-vs-Rest and WSABIE, on

Jason Weston' and Samy Bengio' and Nicolas Usunier” the Web-data dataset. Annotations in red+bold are the true
1 Google, USA labels. _
2 Université Paris 6, LIP6, France L Image | Cno-v-Rest | WSARE |
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Related Work: Joint embedding of image and text

.DeVISE: Deep Visual Semantic Embedding Model

~Learns a linear transformation of visual and textual features with a single-directional
ranking loss

DeViSE: A Deep Visual-Semantic Embedding Model
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Figure 1: (a) Left: a visual object categorization network with a softmax output layer; Right: a skip-gram
language model; Center: our joint model, which is initialized with parameters pre-trained at the lower layers
of the other two models. (b) t-SNE visualization [ 19] of a subset of the ILSVRC 2012 1K label embeddings

learned using skip-gram.



Related work: Joint embedding of |

.Using Bi-directional ranking loss
Deep Visual-Semantic Alignments for Generating Image Descriptions

Andrej Karpathy Li Fei-Fei
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Unifying Visual-Semantic Embeddings with
Multimodal Neural Language Models

Ryan Kiros, Ruslan Salakhutdinov, Richard S. Zemel
University of Toronto
Canadian Insutute for Advanced Research
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for Finding and Describing Images with Sentences

Richard Socher, Andrej Karpathy, Quoc V. Le*, Christopher D. Manning, Andrew Y. Ng
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Related Work: Joint embedding of image and text

.Deep methods: Deep Multimodal Auto-Encoders

Multimodal Deep Learning
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Honglak Lee? HONGLAKQEECS.UMICH.EDU

Andrew Y. Ng!

! Computer Seience Department, Stanford University, Stanford, CA 94305, USA
? Computer Seience and Engineering Division, University of Michigan, Ann Arbor, MI 48109, USA

INGIAM@CS.STANFORD.EDU
ADITYASGQCS.STANFORD.EDU
MINKYUS9@(S.STANFORD.EDU

ANG@CS.STANFORD.EDU

Audio Reconstruction

(OO «ee OO |

Video Reconstruction

(OO «+s OO |

.T.
OO0 - OO |

Shared
|.- «se 00 IH.E'P‘I‘E!’-E]‘I."EI‘HDII.

o® - @@ |

¥
|00 «+- 00| (0O --- 00|

Audio Input Video Input
(b) Bimodal Deep Autoencoder

@@+ DO |




Related Work: Joint embedding of image and text

.Deep methods: CNN-RNN Input Visual Sequence  Output

Features Learning

Long-term Recurrent Convolutional Networks for | TV
Visual Recognition and Description | : i H*y §

Jeff Donahue, Lisa Anne Hendricks, Marcus Rohrbach, Subhashini Venugopalan, Sergio Guadarrama, i i ! : E E i ’ E
Kate Saenko, Trevor Darrell : . i i . i i . E E . i
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Fig. 1. We propose Long-term Recurrent Comwolutional Networks (LR-
CMNs), aclass of architectures leveraging the strengths of rapid progress
in CHMMs for visual recognition problems, and the growing desire to
apply such models to time-varying inputs and outputs. LRCM processes
the (possibly) wariable-length visual input (left) with a CMNM (middle-
left), whose outputs are fed into a stack of recurrent sequence models
(L5TMs, middle-right), which finally produce a variable-length prediction
(right). Both the CMNM and LSTM weights are shared across time, resuli-
ing in a representation that scales to arbitrarily long sequences.



Related Work: Joint embedding of image and text

.Deep methods: multimodal RNN (mRNN)

DEEP CAPTIONING WITH MULTIMODAL RECURRENT
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Figure 2: Illustration of the simple Recurrent Neural Network (RNN) and our multimodal Recurrent
Neural Network (m-RNN) architecture. (a). The simple RNN. (b). Our m-RNN model. The inputs
of our model are an image and its corresponding sentence descriptions. wy, w3z, ..., wi represents the
words 1n a sentence. We add a start s1gn w.,q and an end s1gn weqg to all the training sentences. The
model estimates the probability distribution of the next word given previous words and the image.
It consists of five layers (1.e. two word embedding layers, a recurrent layer, a multimodal layer and
a softmax layer) and a deep CNN in each time frame. The number above each layer indicates the
dimension of the layer. The weights are shared among all the time frames. (Best viewed in color)



User Study: Dataset, Methodology

and Inter-user Agreement

-Validating semantic search: Conducted a user study to acquire annotations related to
the semantic similarity between images as perceived by users.

. Dataset: Visual Genome composed of 108k images, with a wide range of annotations
such as region-level captions, scene graphs, objects, and
attributeshttps://visualgenome.org/



https://visualgenome.org/

User Study: Dataset, Methodology

and Inter-user Agreement

.Methodology:
~Involves 35 annotators (13 women and 22 men)

-Manually ranking a large set of images according to their semantic relevance to a query image
is a very complex, tidious, and time-consuming task.

-To ease the task to annotators: Triplet ranking problem

.Given a tr(iflet of images, composed of one query image and two other images, annotators
were asked to choose the most semantically similar image to the query among the two option.

-To construct the triplets, authors randomly sample query images and then choose two images
that are visually similar to the query. This is achieved by extracting image features using
ResNet-101, pretrained on ImageNet.

-Two images are sampled from the 50 nearest neighbours to the query in the visual feature
space.

-Inter-user agreement : 87.3



User Study: Dataset, Methodology

and Inter-user Agreement

Agreement with Visual Representations

Method score
Human annotators 89.1 £ 4.6
Visual baseline: ResNet R-MAC ~ 64.0
Object annotations 63.4
Human captions: METEOR 72.1
Human captions: word2vec + FV  70.1
Human captions: tf-idf 76.3
Generated captions: tf-idf 62.5
Random (x5) 50.0 £ 0.8

Table 1. Top row, inter-human annotation agreement on the im-
age ranking task. Bottom rows: comparison between the semantic
ranking provided by human annotators and several visual baselines
and methods based on the Visual Genome annotations.



Proposed Methods

5.1. Visual embedding

Our underlying visual representation is the ResNet-101
R-MAC network discussed in Section 3. This network is de-
signed for retrieval [6-] and can be trained in an end-to-end
manner [’5]. Our objective is to learn the optimal weights
of the model (the convolutional layers and the projections in
the R-MAC pipeline) that preserve the semantic similarity.
As a proxy of the true semantic similarity we leverage the
tf-idf-based BoW representation over the image captions.
Given two images with captions we define their proxy simi-
larity as the dot product between their tf-idf representations.

To train our network we propose to minimize the empir-
ical loss of the visual samples over the training data. If ¢
denotes a query image. d* a semantically similar image to
g. and d~ a semantically dissimilar image, we define the
empirical lossasas L =3 > ;. ;- L.(q, d™,d "), where

_ 1 T T
LU[QJ d+!d ): § max[U,m _‘Pg“;’+ +‘P§‘P—)! (1)

m is the margin and ¢ : 7 — RY is the function that em-
beds the image into a vectorial space, i.e. the output of our
model. We slightly abuse the notation and denote &(q),
o(d™), and ¢(d ™), as &g, &+, and ¢_. We optimize this
loss with a three-stream network as in [ 5] with stochastic
optimization using ADAM [7].

S5.2. A joint visual and textual embedding

In the previous formulation, we only used the textual in-
formation (i.e. the human captions) as a proxy for the se-
mantic similarity in order to build the triplets of images
(query, relevant and irrelevant) used in the loss function.
In this section. we propose to leverage the text information
in an explicit manner during the training process. This is
done by building a joint embedding space for both the wvi-
sual representation and the textual representation. For this
we define two new losses that operate over the text repre-
sentations associated with the images:

1
Lay(g, d7,d7) = 5 max (0, e — -:;:535"_,_ —+ ¢§9_}, 2)
1

As before, m is the margin., ¢ : T — E¥ is the visual em-
bedding of the image. and ¢ : T — R is the function that
embeds the text associated with the image into a vectorial
space of the same dimensionality as the visual features. We
define the textual embedding as @(f) — ”1—‘3}%, where #
is the fs-normalirzed tf-idf vector and 1 is a learned ma-
trix that projects # into a space associated with the wisual
representation.

The goal of these two textual losses is to explicitly guide
the visual representation towards the textual one, which we
know is more informative. In particular, the loss in Eq. (2)
enforces that text representations can be retrieved using the
visual representation as a query. implicitly improving the
visual representation, while the loss in Eq. (3) ensures that
image representations can be retrieved using the textual rep-
resentation. which is particularly useful if text information
is available at query time. All three losses (the visual and



Experiments: Tasks

.To validate the representations produced by proposed semantic embeddings on the
semantic retrieval task

~Evaluated how well the learned embeddings are able to reproduce the similarity
surrogate based on the human captions.

~Evaluated proposed model using the triplet-ranking annotations acquired from users,
by comparing how well visual embeddings agree with the human decisions on the
triplets.



Experiments: Implementation

Setup:

~Visual model: ResNet-101 (pretrained on ImageNet), followed by the R-MAC pooling,
projection, aggregation and normalization.

—Textual features: Encoding the captions using tf-idf, after stemming using Snowball stemmer
from NLTK

—Batch size: 64
—Optimizer: ADAM
-LR; 10*e-5

-Metrics: Normalized Discounted Cumulative Gain (NDCG), and Pearson’s Correlation
Coefficient (PCC)

—PCC measures the correlation between ground-truth and predicted ranking scores

-NDCG is the weighted mean average precision



Results and Discussion

Methods and baselines. We evaluate different versions of
our embedding. We denote our methods with a tuple of
the form ({V, V+T}, {V. V+T}). The first element denotes
whether the model was trained using only visual embed-
dings (V). ¢f. Eq. (1), or joint visual and textual embed-
dings (V+T), ¢f. Eq. (1)-(3). The second element denotes
whether, at test time, one queries only with an image, using
its visual embedding (V), or with an image and text, using
its joint visual and textual embedding (V+T). In all cases,
the database consists only of images represented with vi-
sual embeddings, with no textual information.
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Figure 2. Left and center: NDCG and PCC achieved by the dif-
ferent models as a function of the number of retrieved images
R, where the ground truth is determined by the tf-idf similarity.
Right: correlation between the ground truth tt-idf similarity and
the visual similarity of the baseline and trained models.



Results and Discussion

Methods and baselines. We evaluate different versions of
our embedding. We denote our methods with a tuple of
the form ({V, V+T}, {V. V+T}). The first element denotes
whether the model was trained using only visual embed-
dings (V). ¢f. Eq. (1), or joint visual and textual embed-
dings (V+T), ¢f. Eq. (1)-(3). The second element denotes
whether, at test time, one queries only with an image, using
its visual embedding (V), or with an image and text, using
its joint visual and textual embedding (V+T). In all cases,
the database consists only of images represented with vi-
sual embeddings, with no textual information.

US NDCG AUC PCC AUC
Text oracle
Caption Tf-idf 76.3 100 100
Query by image
Random (x5) 500+08 102+£01 -02£0.7
Visual baseline (, V)  64.0 58.4 16.1
WSABIE (V+T, V) 67.8 61.0 15.7
Proposed (V, V) 76.9 70.1 20.7
Proposed (V+T, V) 77.2 68.8 21.1
Query by image + text
Proposed (V+T, V+T) 78.6 74.4 22.5

Table 2. Comparison of the proposed methods and baselines eval-
uated according to User-study (US) agreement score, AUC of the
NDCG and PCC curves (1.e. NDCG AUC and PCC AUC).



Qualitative Results

Top semantically retrieved

Baseline

Trained
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Figure 4. Qualitative results. For every block of images. left: query image. top: top-7 images with the representation pretrained on
ImageNet, bottom: top-7 images with our learned representation with the (V+T.V) model.




Qualitative Results

Top semantically retrieved

- electric + steam
+ old + smoke

- dog + cat
Figure 5. For a set of query images, we use a text modifier as additional query information (concepts are added or removed) to bias the
results. Note that the first query is the last one from Figure 4 refined with additional text.
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