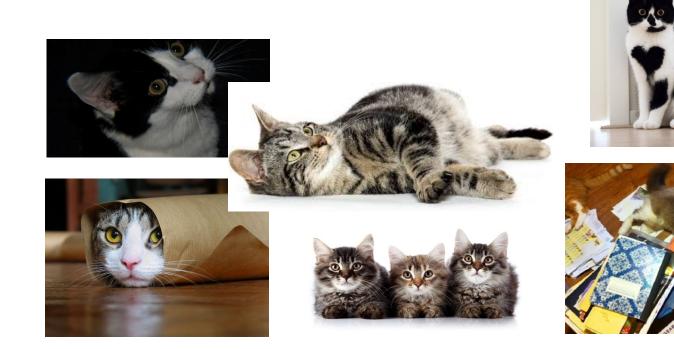


Learning SPD-matrix-based Representation for Visual Recognition

Lei Wang VILA group School of Computing and Information Technology University of Wollongong, Australia 22-OCT-2018

- How to **represent** an image?
 - Scale, rotation, illumination, occlusion,

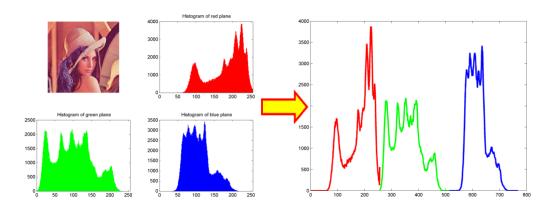
background clutter, deformation, ...

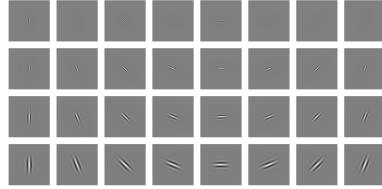


Cat:

1. Before year 2000

- Hand-crafted, **global** features
 - Color, texture, shape, structure, etc.
 - Goal: "Invariant and discriminative"
- Classifier
 - K-nearest neighbor, SVMs, Boosting, ...



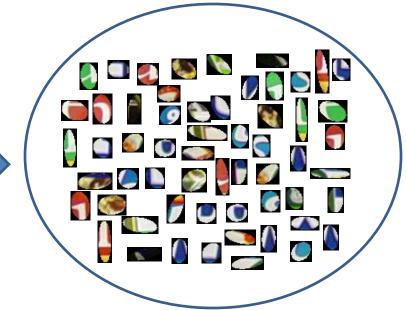


2. Days of the Bag of Features (BoF) model

Local Invariant Features

 Invariant to view angle, rotation, scale, illumination, clutter, ...

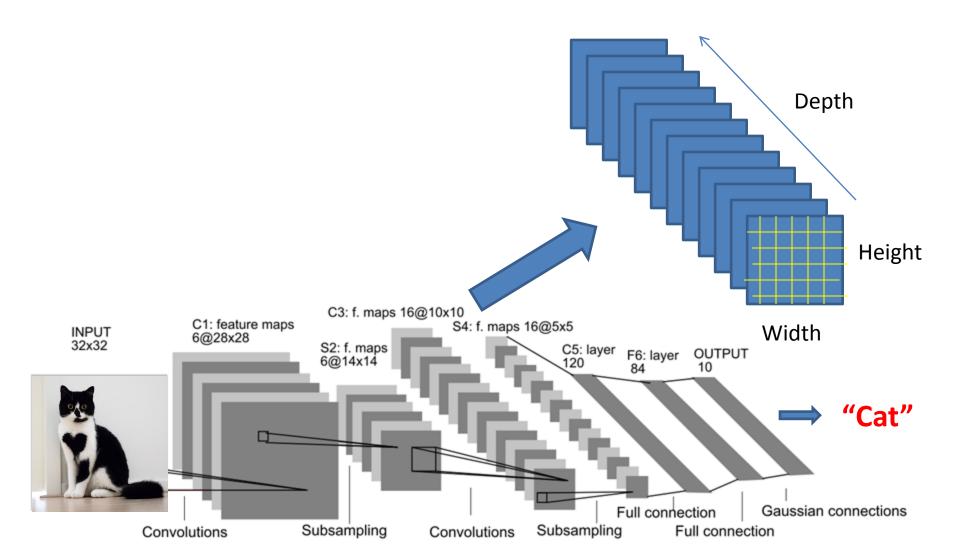
Interest point detection or Dense sampling



An image becomes "A bag of features"

3. Era of Deep Learning

Deep Local Descriptors



Image(s): a set of points/vectors

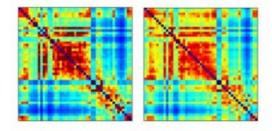
Object detection & classification Image set classification



VS.

Action recognition

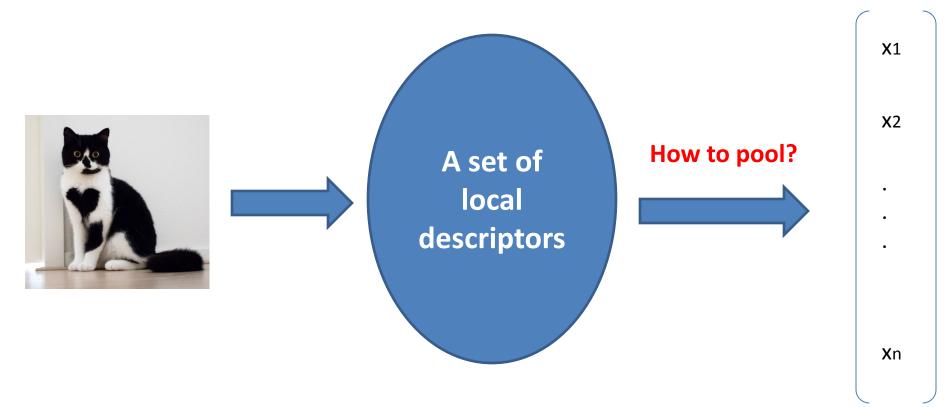
Neuroimaging analysis



How to pool a set of points/vectors to obtain a global visual representation ?

Covariance representation

Essentially a second-order pooling



- Max pooling, average (sum) pooling, etc.
- Covariance pooling

- Introduction on **Covariance** representation
- Our research work
 - Discriminatively Learning Covariance Representation
 - Exploring Sparse Inverse Covariance Representation
 - Moving to Kernel-matrix-based Representation (KSPD)
 - Learning KSPD in deep neural networks
- Conclusion

 $\mathbf{x}_i \in \mathbb{R}^d$

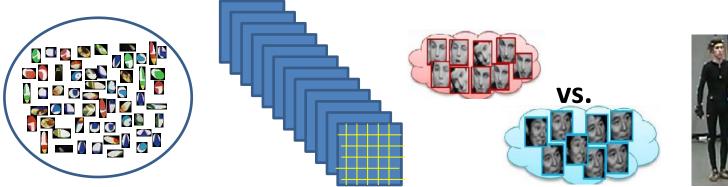
 \mathbf{x}_1 , we define the relation constraint frequencies \mathbf{x}_1

X₂ **ML that Mile dial bits** a **ML has been at seat ble dial states a**b

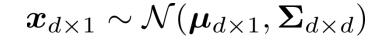
:

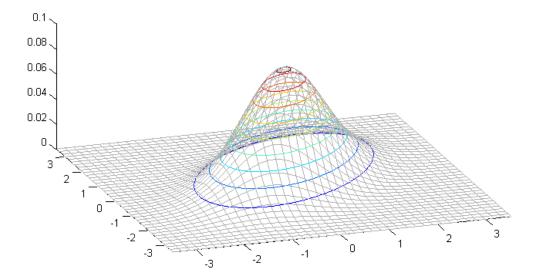
\mathbf{x}_n , **Marking the fore least of the ULD constant of the UDD sector \mathbf{x}_n**

Covariance Matrix



Use a **Covariance matrix** as a feature representation

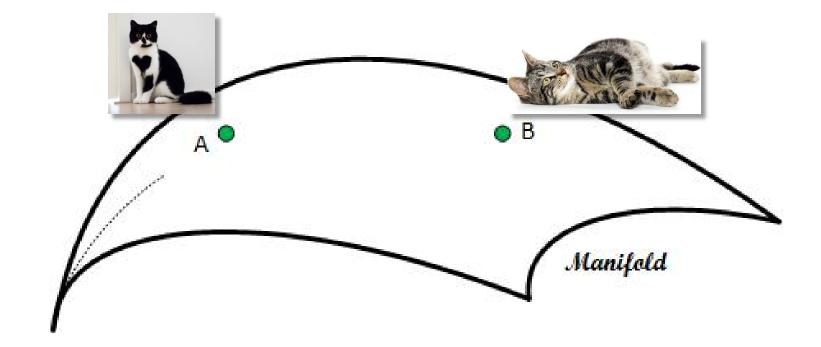




$$\boldsymbol{\mu} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} \qquad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{2}^{2} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{3}^{2} \end{pmatrix}$$
$$\boldsymbol{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{\top} \qquad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{2}^{2} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{3}^{2} \end{pmatrix}$$

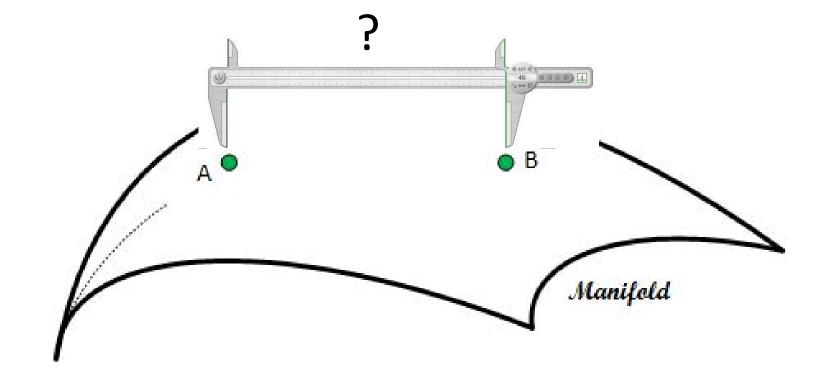
Σ belongs to **Symmetric Positive Definite** (SPD) matrix

$$\operatorname{Sym}_d^+ = \{ \boldsymbol{A} | \boldsymbol{A} = \boldsymbol{A}^\top, \forall \boldsymbol{x} \in \mathbb{R}^d, \boldsymbol{x} \neq \boldsymbol{0}, \boldsymbol{x}^\top \boldsymbol{A} \boldsymbol{x} > 0 \}$$

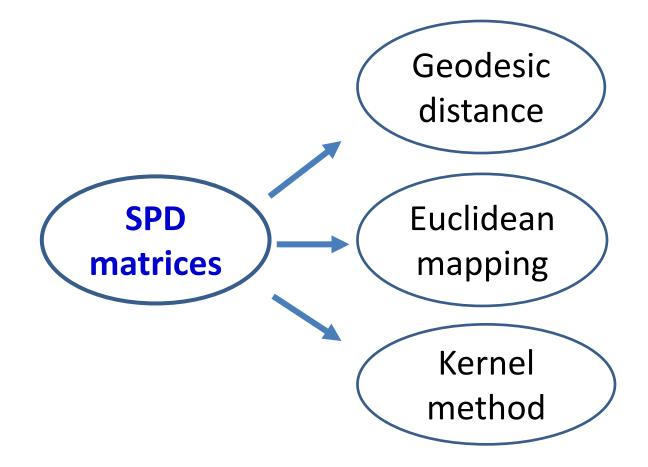


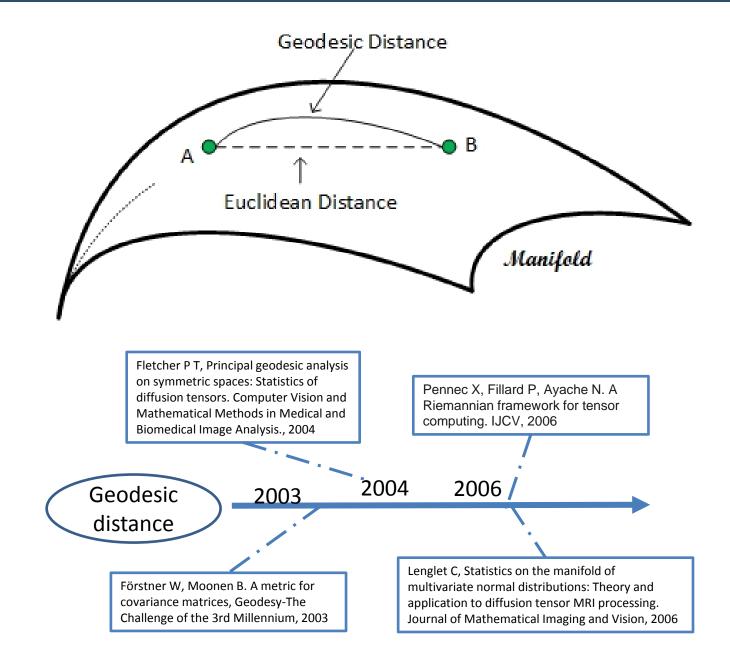
 $\boldsymbol{\Sigma}$ resides on a **manifold** instead of the whole space

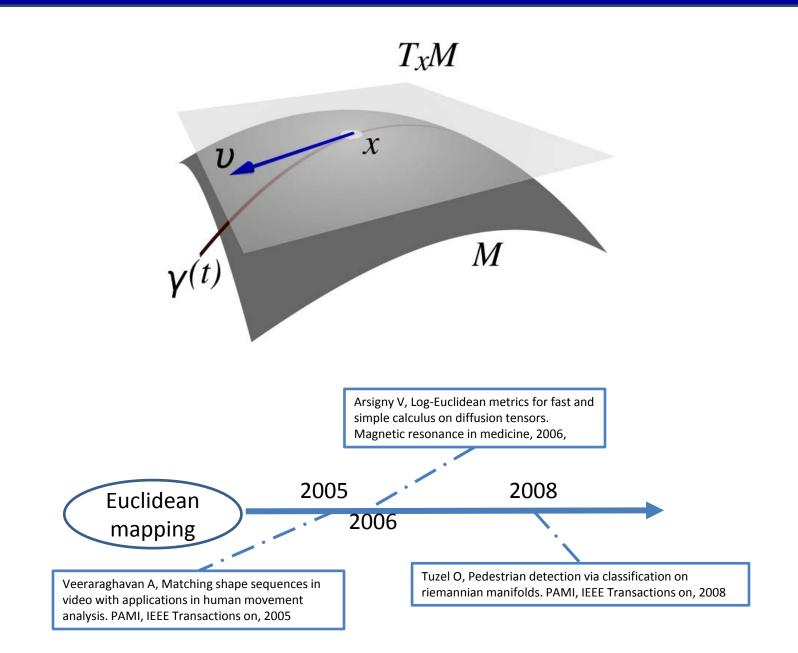
How to **measure the similarity** of two SPD matrices?

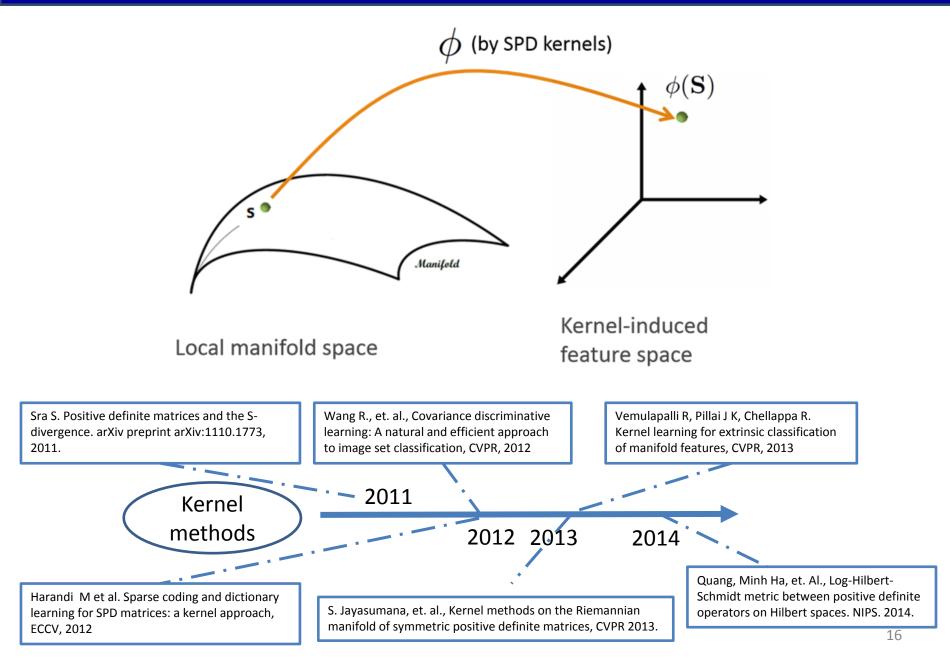


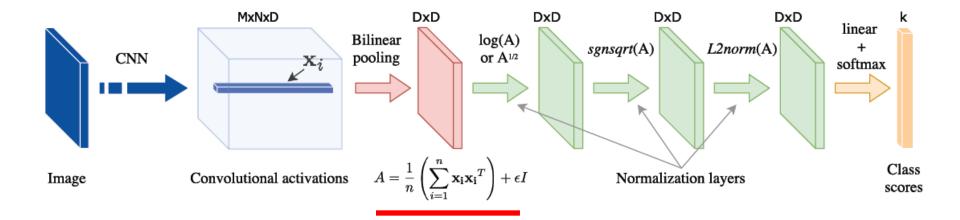
Similarity measures for SPD matrices

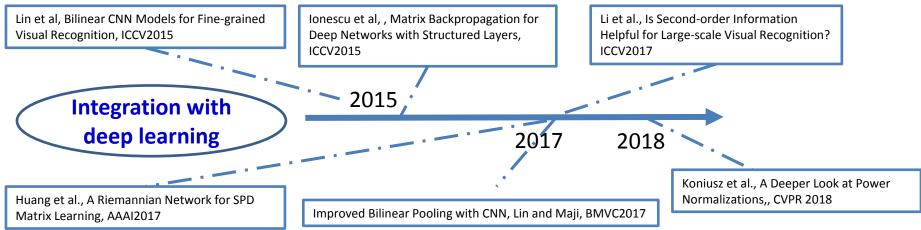






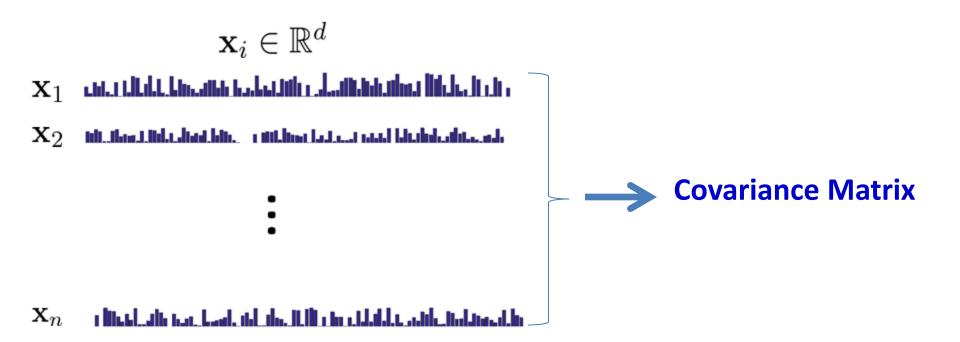






- Introduction on **Covariance** representation
- Our research work
 - **Discriminatively Learning** Covariance Representation
 - Exploring Sparse Inverse Covariance Representation
 - Moving to Kernel-matrix-based Representation (KSPD)
 - Learning KSPD in deep neural networks
- Conclusion

Motivation



Covariance matrix needs to be estimated from data

- Covariance estimate becomes unreliable
 - High-dimensional (d) features
 - Small sample (n)

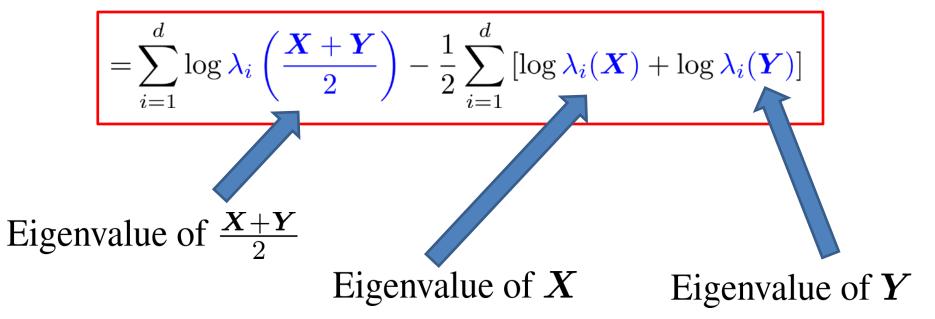
$$\operatorname{rank}(\mathbf{\Sigma}_{d \times d}) \le \min(d, n-1)$$

- Existing work
 - Not consider the **quality** of covariance representation
 - Especially the estimate of eigenvalues

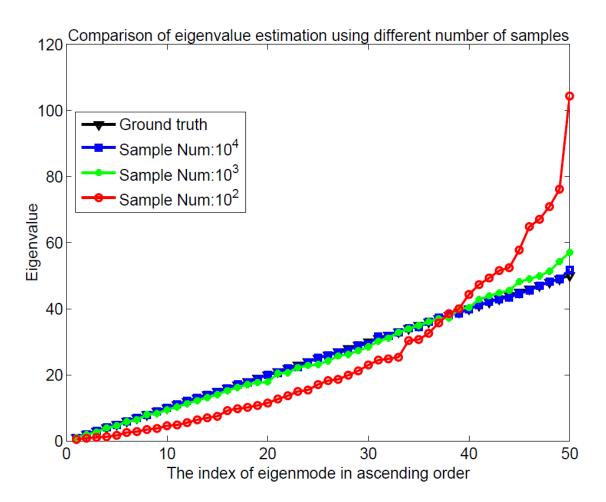
Motivation

Stein Kernel $k(\mathbf{X}, \mathbf{Y}) = \exp\left(-\theta \cdot \mathbf{S}\left(\mathbf{X}, \mathbf{Y}\right)\right)$

where
$$S(\boldsymbol{X}, \boldsymbol{Y}) = \log\left(\det\left(\frac{\boldsymbol{X}+\boldsymbol{Y}}{2}\right)\right) - \frac{1}{2}\log\left(\det(\boldsymbol{X}\boldsymbol{Y})\right)$$

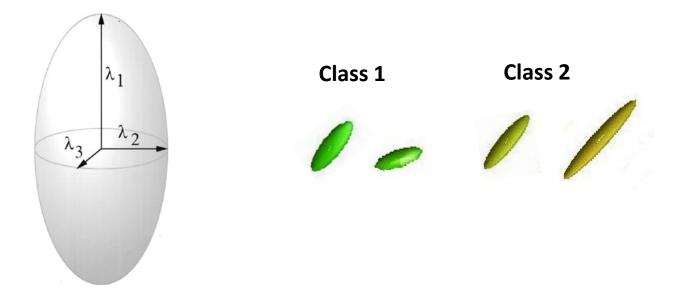


1. Eigenvalue estimation becomes **biased** when the number of samples is **inadequate**



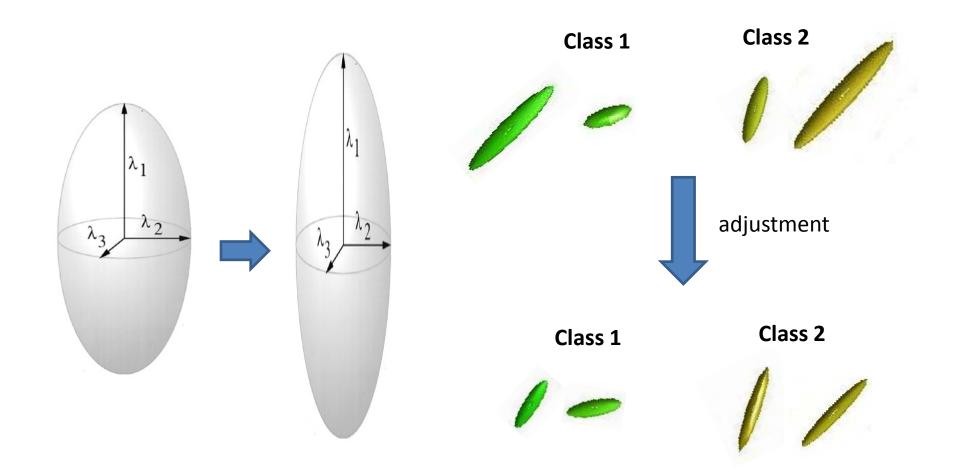
2. The **eigenvalues** are **not** collectively manipulated toward greater **discrimination**

$$oldsymbol{X} = oldsymbol{\lambda}_1 oldsymbol{u}_1 oldsymbol{u}_1^ op + oldsymbol{\lambda}_2 oldsymbol{u}_2 oldsymbol{u}_2^ op + \cdots + oldsymbol{\lambda}_d oldsymbol{u}_d oldsymbol{u}_d^ op$$



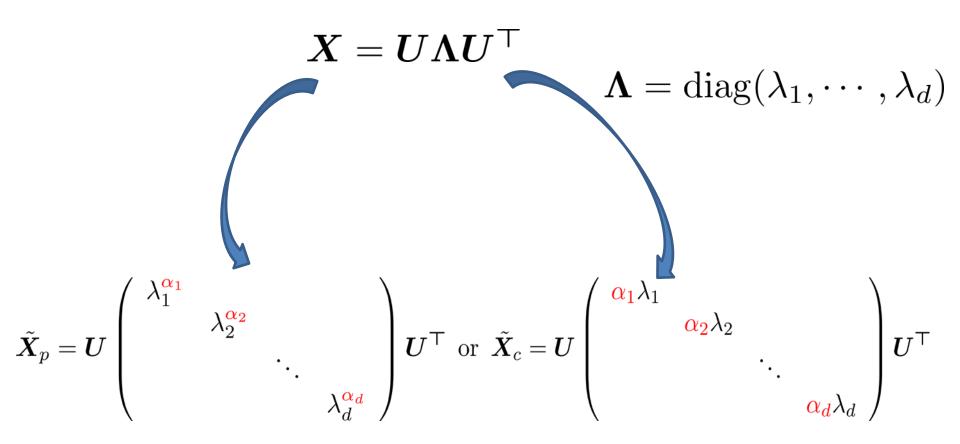
Proposed method

Let's do a data-dependent "eigenvalue massage"



Proposed method

We propose "Discriminative Covariance Representation"



Power-based adjustment

Coefficient-based adjustment

Proposed method

 α -adjusted S-Divergence:

• Power-based adjustment

$$S(\tilde{\boldsymbol{X}}_p, \tilde{\boldsymbol{Y}}_p) = \sum_{i=1}^d \log \lambda_i \left(\frac{\tilde{\boldsymbol{X}}_p + \tilde{\boldsymbol{Y}}_p}{2} \right) - \frac{1}{2} \sum_{i=1}^d \boldsymbol{\alpha_i} \left(\log \lambda_i(\boldsymbol{X}) + \log \lambda_i(\boldsymbol{Y}) \right)$$

• Coefficient-based adjustment

$$S(\tilde{\boldsymbol{X}_{c}}, \tilde{\boldsymbol{Y}_{c}}) = \sum_{i=1}^{d} \log \lambda_{i} \left(\frac{\tilde{\boldsymbol{X}_{c}} + \tilde{\boldsymbol{Y}_{c}}}{2}\right) - \frac{1}{2} \sum_{i=1}^{d} \left(2 \log \alpha_{i} + \log \lambda_{i}(\boldsymbol{X}) + \log \lambda_{i}(\boldsymbol{Y})\right)$$

Discriminative Stein kernel (DSK)

$$k_{\alpha}(\boldsymbol{X}, \boldsymbol{Y}) = \exp\left(-\theta \cdot \boldsymbol{S}_{\alpha}\left(\boldsymbol{X}, \boldsymbol{Y}\right)\right)$$

How to **learn** the **optimal** adjustment parameter α ?

- Kernel Alignment based method
- Class Separability based method
- Radius-margin Bound based Framework

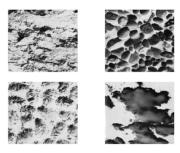
Discriminative Stein kernel (DSK)

$$k_{\alpha}(\boldsymbol{X}, \boldsymbol{Y}) = \exp\left(-\theta \cdot S_{\alpha}\left(\boldsymbol{X}, \boldsymbol{Y}\right)\right)$$

Experimental Result

Data sets

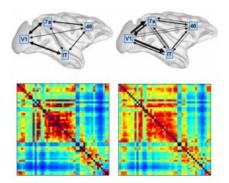
• Brodatz texture



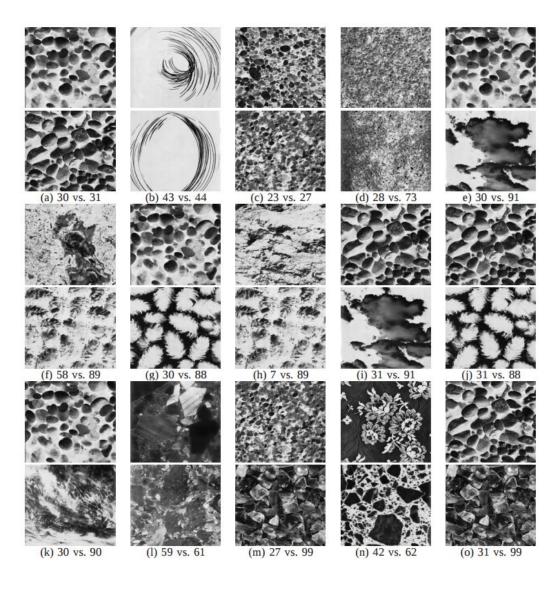
• ETH-80 object

• FERET face

ADNI rs-fMRI



Experimental Result



The most difficult 15 pairs of Brodatz texture data set

COMPARISON OF CLASSIFICATION ACCURACY (IN PERCENTAGE) ON EACH OF THE 15 MOST DIFFICULT PAIRS FROM BRODATZ TEXTURE DATA SET

Index	1	2	3	4	5	6	7	8
SK				75.00				
DSK-KA _p	70.31	73.44	75.00	81.25	76.56	79.69	82.81	79.69
Index	9	10	11	12	13	14	15	Avg.
Index SK	-			12 81.25				0

The most difficult 15 pairs of Brodatz texture data set

DSK vs. eigenvalue estimation improvement methods

Data	n/Dim	sample	[1]	[2]	[3]	DSK
		cov.				
Brodatz	1,024/5	78.01	77.50	78.00	78.00	83.40
	≈ 205	±	±	±	\pm	±
		0.43	0.41	0.43	0.48	0.58
FERET	98,304/4	379.70	78.10	79.70	79.68	84.60
	\approx	±	±	±	±	±
	2286	3.10	2.98	3.10	3.10	1.71
ETH80	16,384/5	80.30	78.80	80.30	80.31	82.70
	\approx	±	±	±	±	±
	3276	0.79	0.89	0.82	0.59	1.05
fMRI	130/90	54.88	54.88	56.10	56.10	59.76
	≈ 1.44					

Table 1: Comparison of average classification accuracy (in percentage) between DSK and the methods of improving eigenvalue estimation.

[1] X. Mestre, "Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates," IEEE Trans. Inf. Theory, vol. 54, pp. 5113–5129, Nov. 2008.

[2] B. Efron and C. Morris, "Multivariate empirical Bayes and estimation of covariance matrices," Ann. Stat., vol. 4, pp. 22–32, 1976.

[3] A. Ben-David and C. E. Davidson, "Eigenvalue estimation of hyper-spectral Wishart covariance matrices from limited number of samples," IEEE Trans. Geosci. Remote Sens., vol. 50, pp. 4384–4396, May 2012.

- Introduction on **Covariance** representation
- Our research work
 - Discriminatively Learning Covariance Representation
 - Exploring Sparse Inverse Covariance Representation
 - Moving to Kernel-matrix-based Representation (KSPD)
 - Learning KSPD in deep neural networks
- Conclusion

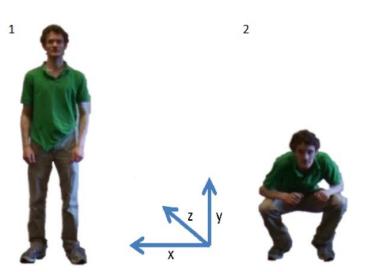
Introduction

Applications with high dimensions but small sample issue

na na an half a la fara-anna a fara-bara faith an a la an tha hair a tha la faith an faith a la anna an faith a Inter a fara-an faith a chun a faraich an an tha bara chuir ann an taobh a bha a bha a bha a sa an a Inter a faith a faraich an an taoin a bha a tha bha an tao a taobh a bha an tao an tao an tao an tao an tao an t Inter a faith a faraichte an tao a bara a tha an tao an

 Small sample
 10 ~ 300

 High dimensions
 50 ~ 400



This results in **singular** covariance estimate, which adversely affects representation.

How to address this situation?

Data + Prior knowledge

Explore the **underlying structure** of visual features

Proposed SICE representation

Structure sparsity in skeletal human action recognition

• Only a small number of joints are directly linked.

• How to represent such **direct links**?

Sparse Inverse Covariance Estimation (SICE)

Assume $\boldsymbol{x}_{d \times 1} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

 $\Sigma_{i,j}^{-1}$: partial correlation of x_i and x_j (for direct link)

Perform **SICE** by maximizing penalized log-likelihood

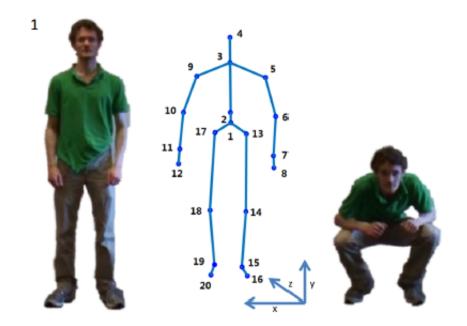
$$\mathbf{S}^* = \arg \max_{\mathbf{S} \succ 0} \left[\log \left(\det(\mathbf{S}) \right) - \operatorname{trace}(\mathbf{CS}) - \lambda \|\mathbf{S}\|_1 \right]$$

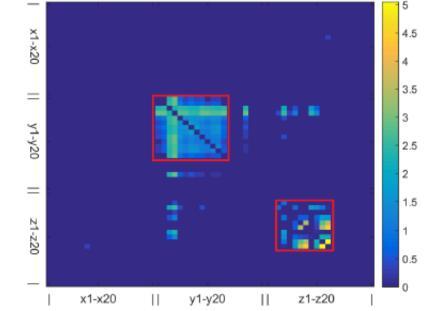
where C is sample-based covariance matrix $\|\mathbf{S}\|_1$ imposes the structure sparsity (Convex, solved by Graphical Lasso, 0.014 CPU second for $\mathbf{S}_{100 \times 100}$) **Properties** of SICE representation:

- is guaranteed to be **nonsingular**
- reduces over-fitting, giving more reliable representation
- Measures the partial correlation, allowing the sparsity prior to be conveniently imposed

$$\mathbf{S}^* = \arg \max_{\mathbf{S} \succ 0} \left[\log \left(\det(\mathbf{S}) \right) - \operatorname{trace}(\mathbf{CS}) - \lambda \|\mathbf{S}\|_1 \right]$$

Application to Skeletal Action Recognition





(a) "Crouch or hide" action from MSRC-12 data set.

(b) Proposed SICE-RP

Application to Skeletal Action Recognition

(Two experiments).	14 classes	All classes
Methods in comparison	Accuracy	Accuracy
$Cov-J_{\mathcal{H}}$ -SVM	82.5	Not reported
RSR	76.1	Not reported
RSR-ML	81.9	40.0
CDL	79.8	Not reported
Cov-RP	91.5	58.9
InverseCov-RP	91.5	58.9
SICE-RP (proposed)	96.8	67.6

Table 1: Comparison on HDM05 data set

Table 1: Comparison on MSR-DailyActivity3D data set.

Table 2: Comparison on MSRC-12 data

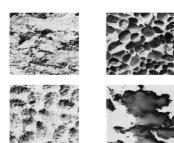
set.	Methods in comparison	Accuracy
-	$\text{Cov-}J_{\mathcal{H}}\text{-}\text{SVM}$	89.8
	Hierarchy of Cov3DJs	91.7
	Cov-RP	89.2
	InverseCov-RP	89.2
	SICE-RP (proposed)	92.5

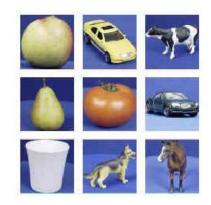
Methods in comparison	Accuracy
Moving Pose	73.8
Local HON4D	80.0
Actionlet Ensemble	86.0
SNV	86.3
$\text{Cov-}J_{\mathcal{H}}\text{-}\text{SVM}$	75.0
Cov-RP	85.0
InverseCov-RP	85.0
SICE-RP (proposed)	93.1

The principle of ``Bet on sparsity''

Table 1: Comparison of classification performance on object classification data sets.

	Brodatz	FERET	ETH80
Methods	(texture)	(face)	(object)
Cov-RP	81.2	81.0	94.0
InverseCov-RP	81.2	81.0	94.0
SICE-RP (proposed)	81.5	83.1	94.1



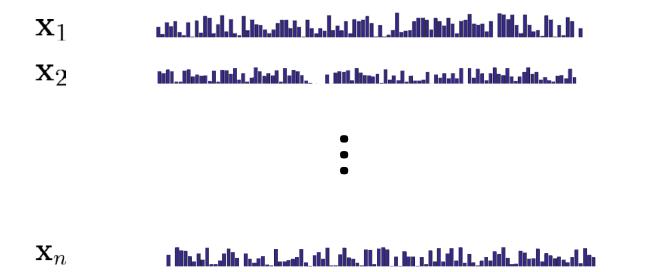


- Introduction on **Covariance** representation
- Our research work
 - Discriminatively Learning Covariance Representation
 - Exploring Sparse Inverse Covariance Representation
 - Moving to Kernel-matrix-based Representation (KSPD)
 - Learning KSPD in deep neural networks
- Conclusion

Introduction

Again, look into Covariance representation

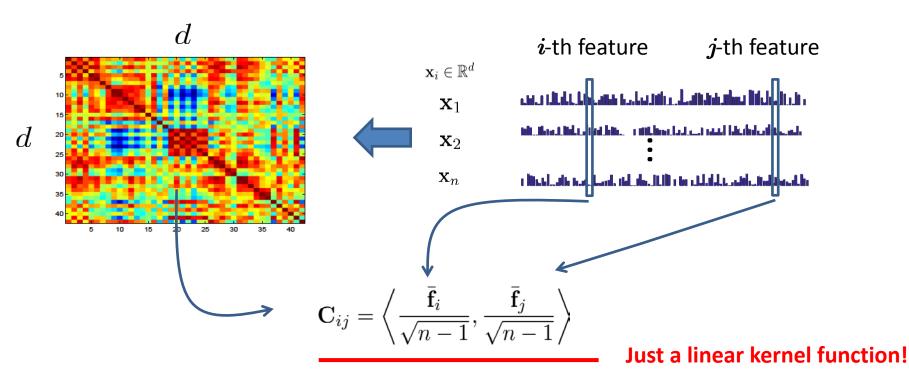
$$\boldsymbol{\Sigma} = rac{1}{n-1} \sum_{i=1}^{n} (\boldsymbol{x}_i - \boldsymbol{\mu}) (\boldsymbol{x}_i - \boldsymbol{\mu})^{ op}$$



$$\mathbf{x}_i \in \mathbb{R}^d$$

Again, look into Covariance representation

$$oldsymbol{\Sigma} = rac{1}{n-1}\sum_{i=1}^n (oldsymbol{x}_i - oldsymbol{\mu}) (oldsymbol{x}_i - oldsymbol{\mu})^ op$$



Covariance representation

$$\mathbf{C}_{ij} = \left\langle \frac{\bar{\mathbf{f}}_i}{\sqrt{n-1}}, \frac{\bar{\mathbf{f}}_j}{\sqrt{n-1}} \right\rangle$$

Resulting issues:

- Only modeling **linear** correlation of features.
- A single, **fixed** representation form.
- Unreliable or even singular covariance estimate.

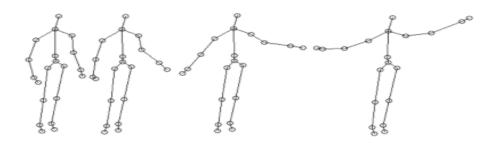
Proposed kernel-matrix representation

Let's use a kernel matrix instead

Advantages:

- Model **nonlinear relationship** between features;
- For many kernels, **M** is **guaranteed to be nonsingular**, no matter what the feature dimensions and sample size are.
- Maintain the size of covariance representation and the computational load.

Application to Skeletal Action Recognition

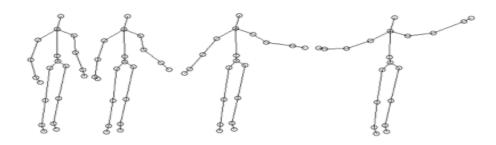


Methods in comparison	Accuracy
Pose Set [25]	90.0
Hierarchy of Cov3DJs [10]	90.5
Moving Pose [31]	91.7
Lie Group [24]	92.5
SNV [29]	93.1
Spatiotemp. Features Fusing [32]	94.3
Cov-RP [22]	74.0
$\text{Cov-}J_{\mathcal{H}}\text{-}\text{SVM}$ [7]	80.4
Ker-RP-POL (proposed)	96.2
Ker-RP-RBF (proposed)	96.9

Comparison on MSR-Action3D data set. Comparison on MSR-DailyActivity3D data set.

▲ ▲	• •
Methods in comparison	Accuracy
Moving Pose [31]	73.8
Local HON4D [13]	80.0
Actionlet Ensemble [26]	86.0
SNV [29]	86.3
Cov-RP [22]	85.0
Cov- $J_{\mathcal{H}}$ -SVM [7]	75.0
Ker-RP-POL (proposed)	96.9
Ker-RP-RBF (proposed)	96.3
	•

Application to Skeletal Action Recognition



Comparison on HDM05 data set (Tw	o experiments).
----------------------------------	-----------------

	14 classes	All classes
Methods in comparison	Accuracy	Accuracy
CDL [27]	79.8	Not reported
RSR [8]	76.1	Not reported
RSR-ML [6]	81.9	40.0
Cov-RP [22]	91.5	58.9
$\text{Cov-}J_{\mathcal{H}}\text{-}\text{SVM}[7]$	82.5	-
Ker-RP-POL (proposed)	93.6	64.3
Ker-RP-RBF (proposed)	96.8	66.2

*The result of Cov- $J_{\mathcal{H}}$ -SVM [7] is not obtained in 35 hours.

Comparison on MSRC-12 data set.		
Methods in comparison	Accuracy	
Hierarchy of Cov3DJs [10]	91.7	
Cov-RP [22]	89.2	
Cov- $J_{\mathcal{H}}$ -SVM [7]	89.2	
Ker-RP-POL (proposed)	90.5	
Ker-RP-RBF (proposed)	92.3	

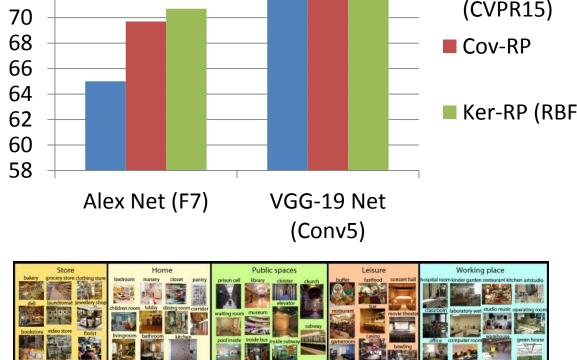
Comparison on object classification data sets.				
Brodatz FERET ETH80				
Methods	(texture)	(face)	(object)	
Cov-RP [22]	81.2	81.0	94.0	
Ker-RP-POL (proposed)	77.9	82.4	93.8	
Ker-RP-RBF (proposed)	84.9	85.4	94.8	



Application to Deep Learning Features

Comparison on MIT Indoor Scenes Data Set

80 78 76 74 Fisher Vector 72 (CVPR15) 70 68 Cov-RP 66 64 Ker-RP (RBF) 62 60 58 Alex Net (F7) VGG-19 Net



(Classification accuracy in percentage)

SICE vs. Kernel matrix: which is better?

Table 1: Comparison between SICE-RP and Kernel representation.

Data set	Cov-RP	SICE-RP	Ker-RP-RBF
MSRC-12	89.2	92.5	92.3
HDM05 (14 classes)	91.5	96.8	96.8
HDM05 (100 classes)	58.9	67.6	66.2
MSR-Action3D	74.0	96.5	96.9
MSR-DailyActivity3D	85.0	93.1	96.3
Brodatz	81.2	81.5	84.9
FERET	81.0	83.1	85.4
ETH80	94.0	94.1	94.8

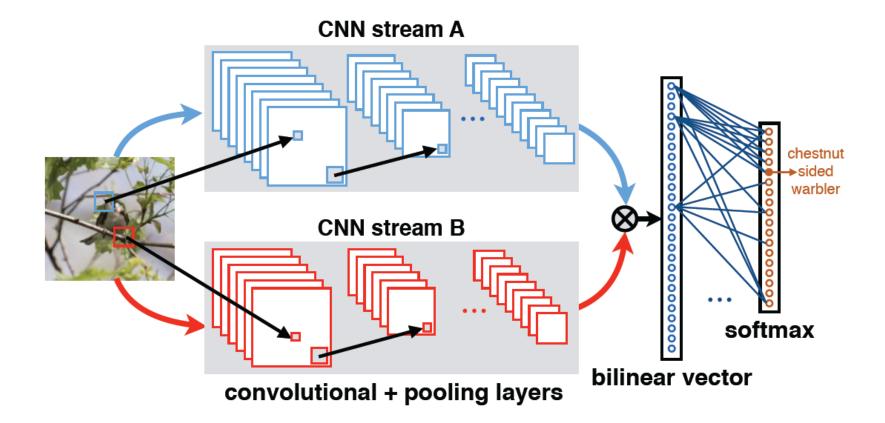
Discussion

SICE vs. Kernel matrix representation: which is better?

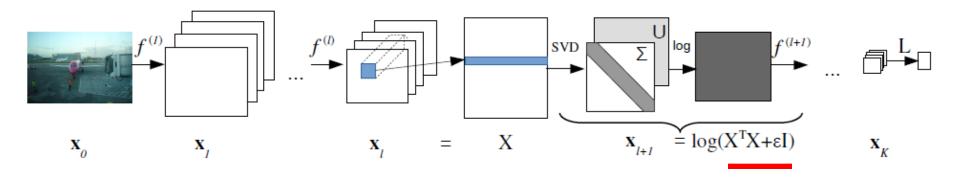
Table 1: Comparison between SICE and Kernel representation.

Criterion	Cov-RP	SICE-RP	Ker-RP
Robust to small sample & high di-	×	\checkmark	\checkmark
mensionality			
Prior knowledge incorporation	×	\checkmark	\checkmark
Guaranteed to be SPD	×	\checkmark	\checkmark
Linear technique	\checkmark	\checkmark	×
Flexibility	×	×	\checkmark
Free of parameter tuning	\checkmark	×	×

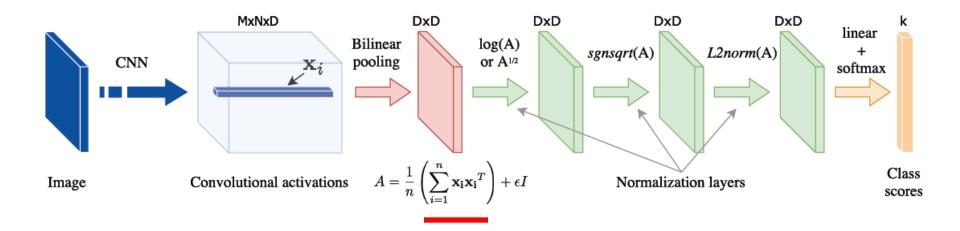
- Introduction on **Covariance** representation
- Our research work
 - Discriminatively Learning Covariance Representation
 - Exploring Sparse Inverse Covariance Representation
 - Moving to Kernel-matrix-based Representation (KSPD)
 - Learning KSPD in deep neural networks
- Conclusion



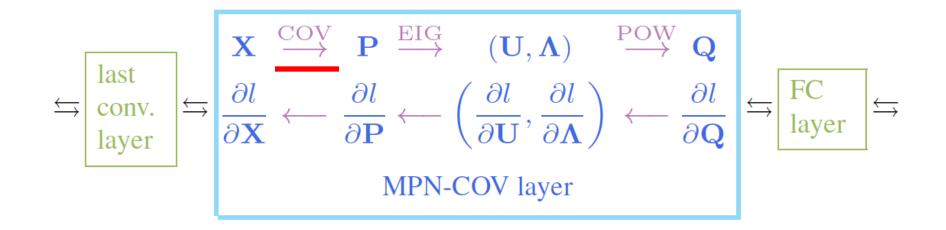
Bilinear CNN Models for Fine-grained Visual Recognition, Lin et al, ICCV2015



Matrix Backpropagation for Deep Networks with Structured Layers, Ionescu et al, ICCV2015



Improved Bilinear Pooling with CNN, Lin and Maji, BMVC2017

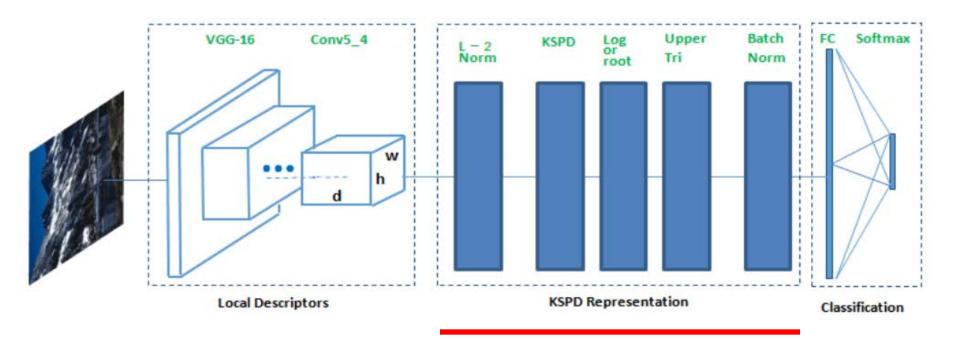


Is Second-order Information Helpful for Large-scale Visual Recognition?, Li et al., ICCV2017

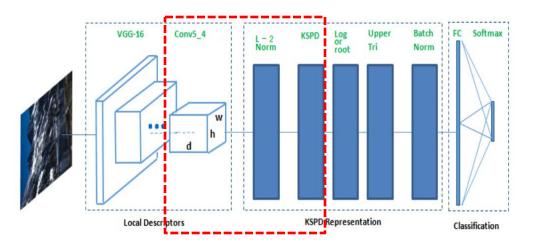
Motivation

- The kernel-matrix-based SPD representation
 - has not been developed upon deep local descriptors
 - has not been jointly learned via deep learning
- Existing matrix backpropagation for learning covariancerepresentation via deep networks
 - encounters numerical stability issue

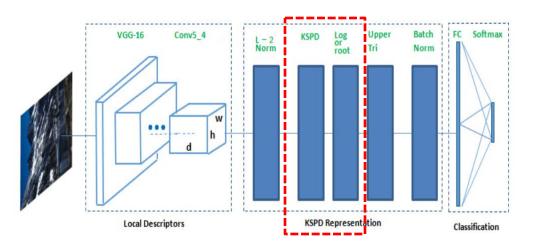
Architecture and layers



Matrix backpropagation



Matrix backpropagation

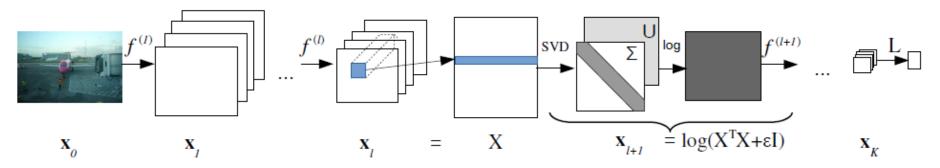


H = f(K) on the kernel matrix K

 $\boldsymbol{K} = \boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^T \qquad \boldsymbol{H} = \boldsymbol{U} f(\boldsymbol{D}) \boldsymbol{U}^T$

 $J(\mathbf{X}) = J_4(\mathbf{H}) = J_4(f(\mathbf{K})).$ $\frac{\partial J_3}{\partial \mathbf{K}} \sim \frac{\partial J_4}{\partial \mathbf{H}}$?

Existing matrix backpropagation



Matrix Backpropagation for Deep Networks with Structured Layers, Ionescu et al, ICCV2015

$$\frac{\partial J_3}{\partial K} = U \left\{ \left(\tilde{G} \circ \left(2U^T \left(\frac{\partial J_4}{\partial H} \right)_{sym} U \log(D) \right) \right) + \left(D^{-1} \left(U^T \frac{\partial J_4}{\partial H} U \right) \right)_{diag} \right\} U^T,$$

$$(16)$$

$$where \mathbf{K} = \mathbf{U} \mathbf{D} \mathbf{U}^T \quad \tilde{g}_{ij} = (\lambda_i - \lambda_j)^{-1} \quad when \ i \neq j \ and \ zero \ otherwise; \mathbf{A}_{diag}$$

$$means \ the \ off-diagonal \ entries \ of \ \mathbf{A} \ are \ all \ set \ to \ zeros; \ and \ \mathbf{A}_{sym} \ is \ defined \ to \ represent \ (\mathbf{A} + \mathbf{A}^T)/2.$$

Result from the literature of Operator Theory (1951)

Theorem 1 (pp.60, [20]) Let \mathbb{M}_d be the set of $d \times d$ real symmetric matrices. Let I be an open interval and $\mathbb{M}_d(I)$ is the set of all real symmetric matrices whose eigenvalues belong to I. Let $C^1(I)$ be the space of continuously differentiable real functions on I. Every function f in $C^1(I)$ induces a differentiable map from Ain $\mathbb{M}_d(I)$ to f(A) in \mathbb{M}_d . Let $Df_A(\cdot)$ denote the derivative of f(A) at A. It is a linear map from \mathbb{M}_d to itself. When applied to $B \in \mathbb{M}_d$, $Df_A(\cdot)$ is given by the Daleckii-Krein formula as

$$\frac{\partial J_3}{\partial K} \longrightarrow Df_A(B) = U\left(G \circ \left(U^T B U\right)\right) U^T, \quad \frac{\partial J_4}{\partial H}$$
(11)

where $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}^T$ is the eigen-decomposition of \mathbf{A} with $\mathbf{D} = \text{diag}(\lambda_1, \cdots, \lambda_d)$, and \circ is the entry-wise product. The entry of the matrix \mathbf{G} is defined as

$$g_{ij} = \begin{cases} \frac{f(\lambda_i) - f(\lambda_j)}{\lambda_i - \lambda_j} & \text{if } \lambda_i \neq \lambda_j \\ f'(\lambda_i), & \text{otherwise.} \end{cases}$$
(12)

20. Bhatia, R.: Positive Definite Matrices. Princeton University Press (2015)

Existing matrix backpropagation (Ionescu et al, ICCV2015)

$$\frac{\partial J_3}{\partial K} = U \left\{ \left(\tilde{G} \circ \left(2U^T \left(\frac{\partial J_4}{\partial H} \right)_{sym} U \log(D) \right) \right) + \left(D^{-1} \left(U^T \frac{\partial J_4}{\partial H} U \right) \right)_{diag} \right\} U^T,$$
(16)
where $K = UDU^T$; $\tilde{g}_{ij} = (\lambda_i - \lambda_j)^{-1}$ when $i \neq j$ and zero otherwise; A_{diag}
means the off-diagonal entries of A are all set to zeros; and A_{sym} is defined to
represent $(A + A^T)/2$.

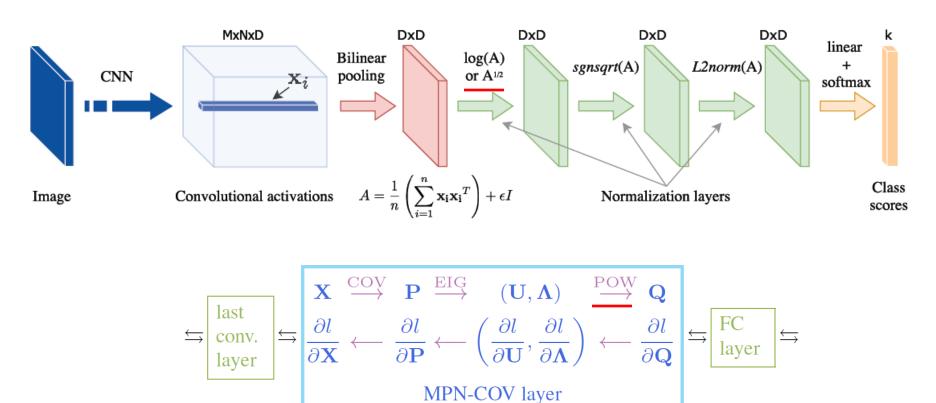
Proposed matrix backpropagation

$$\frac{\partial J_3}{\partial \boldsymbol{K}} = \boldsymbol{U} \left(\boldsymbol{G} \circ \left(\boldsymbol{U}^T \frac{\partial J_4}{\partial \boldsymbol{H}} \boldsymbol{U} \right) \right) \boldsymbol{U}^T$$

$$g_{ij} = \begin{cases} \frac{f(\lambda_i) - f(\lambda_j)}{\lambda_i - \lambda_j} & \text{if } \lambda_i \neq \lambda_j \\ f'(\lambda_i), & \text{otherwise.} \end{cases}$$

What is their relationship?

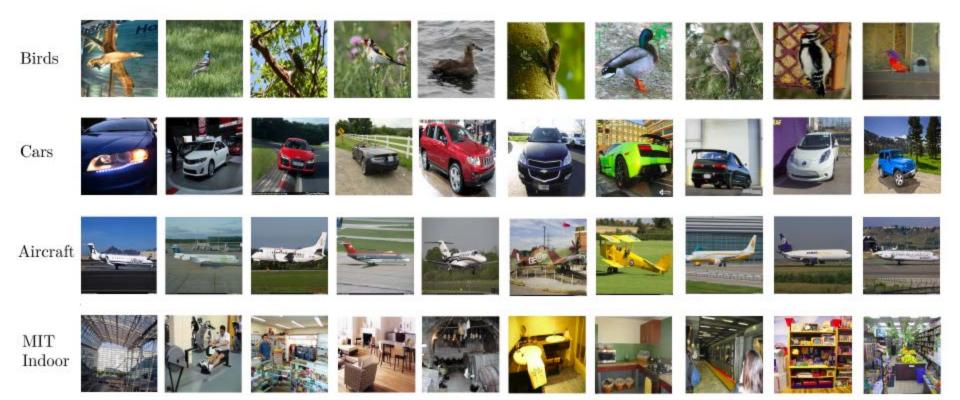
Generalise to matrix α -rooting normalisation



$$f(\lambda) = \lambda^{\alpha} \implies \frac{\partial J}{\partial \alpha} = \operatorname{trace}\left(\left(\frac{\partial J_4}{\partial H}\right)^T \left[U(\log(D) \circ D^{\alpha})U^T\right]\right)$$

Experimental Result

Fine-grained Image Recognition

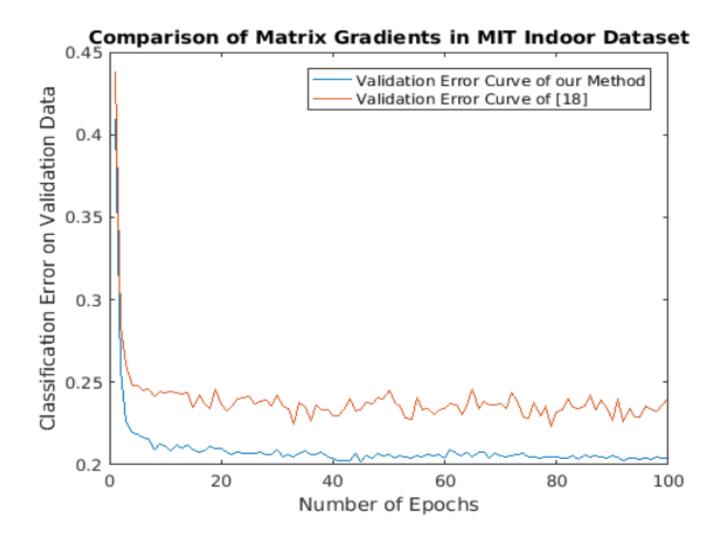


Fine-grained Image Recognition

 Table 1. Comparison of Methods

ACC (%)	MIT indoor	Cars	Aircraft	Birds	Average
Symbiotic Model [29]	—	78.0	72.5	-	-
FV-revisit [30]	_	82.7	80.7	_	_
FV-SIFT [27]	—	59.2	61.0	18.8	—
FC-VGG [21]	67.6	36.5	45.0	61.0	52.5
FV-VGG [28]	73.7	75.2	72.7	71.3	73.1
FV-VGG-ft [21]	_	85.7	78.7	74.7	73.1
COV-VGG	74.2	80.3	81.4	76	78.0
$\mathrm{KSPD}\text{-}\mathrm{VGG}\ (\mathbf{proposed})$	77.2	83.5	83.8	78.5	80.1
BCNN [13]	77.6	91.3	86.6	84.1	84.5
Improved BCNN [12]	-	92.0	88.5	85.8	-
CBP [14]	76.17	-	-	84.0	-
LRBP [11]	-	90.9	87.3	84.2	-
KP [17]	_	92.4	86.9	86.2	—
DeepKSPD-logm (proposed)	79.6	90.5	91.5	84.8	86.6
DeepKSPD-rootm (proposed)	81.0	93.2	91.0	86.5	87.9

Numerical stability of backpropagation



DeepKSPD vs DeepCOV

ACC $(\%)$	MIT indoor	Cars	Aircraft	Birds
Improved BCNN [12]	_	92.0	88.5	85.8
DeepCOV-	79.2	91.7	88.7	85.4
rootm				
DeepKSPD-	81.0	93.2	91.0	86.5
rootm				

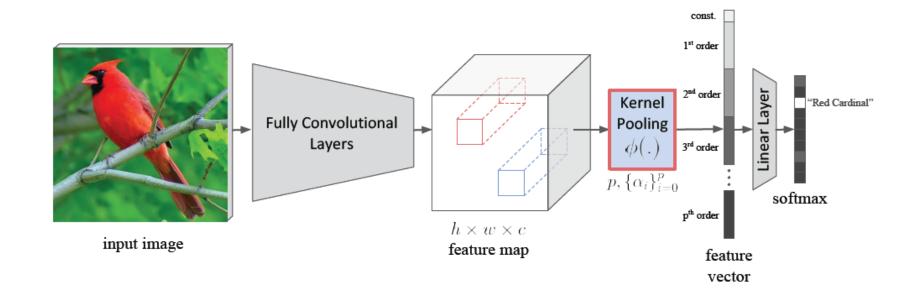
Ablation study

- Learning width θ in the GRBF kernel
- Learning α in matrix α -rooting normalisation

ACC $(\%)$	MIT indoor	Cars	Aircraft	Birds
Initial θ	0.1	0.1	0.1	0.1
Initial α	0.5	0.5	0.5	0.5
Final θ	0.63	1.4	0.67	0.93
Final α	0.49	0.52	0.53	0.52

Research trend on learning SPD representation

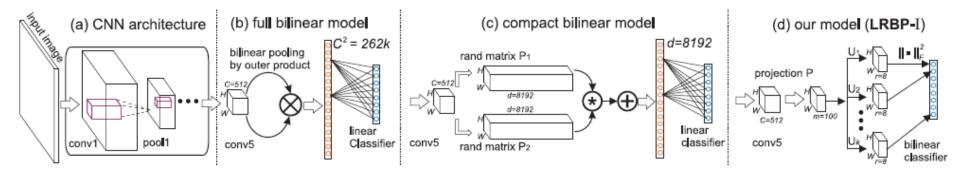
• Consider higher-order feature relationship



Kernel Pooling for Convolutional Neural Networks, Cui et al, CVPR2017

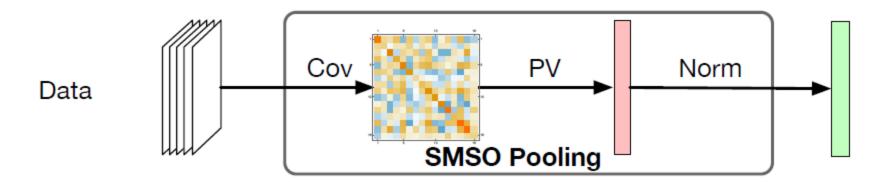
Research trend on learning SPD representation

Improve the computational efficiency



(c) Compact Bilinear Pooling, Gao et al, CVPR2016

(d) Low-rank Bilinear Pooling for Fine-Grained Classification, Kong et al, CVPR2017



Statistically-motivated Second-order Pooling, Yu and Salzmann, ECCV2018

Conclusion

- **Discriminative Stein kernel** to address two issues in covariance representation
- **SICE representation** to incorporate structure sparsity
- Kernel matrix representation to move beyond linear, fixed covariance representation
- End-to-end deep learning of KSPD representation
 - 1. J. Zhang, L. Wang, L. Zhou, and W. Li, Learning Discriminative Stein Kernel for SPD Matrices and Its Applications, *IEEE Transactions on Neural Networks and Learning Systems (TNNLS)*, Vol. 27, Issue 5, pp. 1020-1033, May 2016.
 - 2. J. Zhang, L. Wang, L. Zhou, and W. Li, Exploiting Structure Sparsity for Covariance-based Visual Representation, arXiv:1610.08619 [cs.CV].
 - 3. L. Wang, J. Zhang, L. Zhou, C. Tang and W. Li, Beyond Covariance: Feature Representation with Nonlinear Kernel Matrices, *IEEE International Conference on Computer Vision (ICCV)*, December 2015.
 - 4. M. Engin, L. Wang, L. Zhou, and X. Liu, DeepKSPD: Learning Kernel-matrixbased SPD Representation for Fine-grained Image Recognition, *The 15th European Conference on Computer Vision (ECCV)*, September 2018.

On-going Issues

- Better understand SPD-matrix-based representation
 - What is it modelling, relationship to other pooling schemes?
- Learn the optimal SPD representation from data
 - Optimisation on manifold, kernel learning, prior knowledge?
- Computational issue
 - Deal with high-dimensional features and large data set?
- Beyond SPD representation
 - Rectangular matrix
 - Higher order information
 - Spatial or temporal order

Other related publications

- J. Zhang, L. Zhou and L. Wang, Subject-adaptive Integration of Multiple SICE Brain Networks with Different Sparsity, Pattern Recognition, 63 642-652, 2017.
- L. Zhou, L. Wang, J. Zhang, Y. Shi and Y. Gao, Revisiting Distance Metric Learning for SPD Matrix based Visual Representation, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.
- L. Zhou, L. Wang, L. Liu, P. Ogunbona, and D. Shen, Learning Discriminative Bayesian Networks from High-dimensional Continuous Neuroimaging Data, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Volume: 38, Issue: 11, Nov. 1 2016.
- J. Zhang, L. Zhou, L. Wang, and W. Li, Functional Brain Network Classification With Compact Representation of SICE Matrices, IEEE Transactions on Biomedical Engineering, 62 (6), 1623-1634, 2015.
- L. Zhou, L. Wang and P. Ogunbona. Discriminative Sparse Inverse Covariance Matrix: Application in Brain Functional Network Classification, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), June 2014
- L. Zhou, L. Wang, L. Liu, P. Ogunbona and D. Shen. Max-margin Based Learning for Discriminative Bayesian Network from Neuroimaging Data, In the 17th International Conference on MICCAI, September 2014.

Images Courtesy of Google Image