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Learning SPD-matrix-based Representation for 
Visual Recognition 



Introduction 

• How to represent an image?  

– Scale, rotation, illumination, occlusion, 

background clutter, deformation, …  

Cat: 



• Hand-crafted, global features 

– Color, texture, shape, structure, etc.  

– Goal: “Invariant and discriminative”  

• Classifier 

– K-nearest neighbor, SVMs, Boosting, … 

1. Before year 2000 



• Invariant to view angle, rotation, scale, 
illumination, clutter, ... 

2. Days of the Bag of Features (BoF) model  

Local Invariant Features 

Interest point 
detection 

or  
Dense sampling 

An image becomes “A bag of features” 



3. Era of Deep Learning  

Deep Local Descriptors 

“Cat” 

Depth 

Height 

Width 



Image(s): a set of points/vectors 
Image set classification 
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Action recognition 

vs. 

Neuroimaging  
analysis 

How to pool a set of points/vectors to obtain  
a global visual representation ? 

Object detection & classification 



Covariance representation 

• Max pooling, average (sum) pooling, etc.  
• Covariance pooling 

A set of 
local 

descriptors 

x1 

x2  

. 

. 

.  

xn  

How to pool? 

Essentially a second-order pooling 



• Introduction on Covariance representation 

• Our research work 

– Discriminatively Learning Covariance Representation 

– Exploring Sparse Inverse Covariance Representation 

– Moving to Kernel-matrix-based Representation (KSPD)   

– Learning KSPD in deep neural networks 

• Conclusion 



Introduction on Covariance representation 

Covariance Matrix 

vs. 



Introduction on Covariance representation 
Use a Covariance matrix as a feature representation 

10 Image is from http://www.statsref.com/HTML/index.html?multivariate_distributions.html 



Introduction on Covariance representation 
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    belongs to Symmetric Positive Definite (SPD) matrix 

     resides on a manifold instead of the whole space 



Introduction on Covariance representation 

? 
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How to measure the similarity of two SPD matrices?  



Introduction on SPD matrix 

Similarity measures for SPD matrices 

13 

SPD 
matrices 

Kernel 
method 

Geodesic 
distance 

Euclidean 
mapping 



Introduction on SPD matrix 
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Geodesic 
distance 

Pennec X, Fillard P, Ayache N. A 
Riemannian framework for tensor 
computing. IJCV, 2006 

Fletcher P T, Principal geodesic analysis 
on symmetric spaces: Statistics of 
diffusion tensors. Computer Vision and 
Mathematical Methods in Medical and 
Biomedical Image Analysis., 2004 

Förstner W, Moonen B. A metric for 
covariance matrices, Geodesy-The 
Challenge of the 3rd Millennium, 2003 

Lenglet C, Statistics on the manifold of 
multivariate normal distributions: Theory and 
application to diffusion tensor MRI processing. 
Journal of Mathematical Imaging and Vision, 2006 

2003 2004 2006 



Introduction on SPD matrix 
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Euclidean 
mapping 

Arsigny V, Log-Euclidean metrics for fast and 
simple calculus on diffusion tensors. 
Magnetic resonance in medicine, 2006,  

Veeraraghavan A, Matching shape sequences in 
video with applications in human movement 
analysis. PAMI, IEEE Transactions on, 2005 

Tuzel O, Pedestrian detection via classification on 
riemannian manifolds. PAMI, IEEE Transactions on, 2008 

2005 
2006 

2008 



Introduction on SPD matrix 
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Kernel 
methods 

Vemulapalli R, Pillai J K, Chellappa R. 
Kernel learning for extrinsic classification 
of manifold features, CVPR, 2013 

Harandi  M et al. Sparse coding and dictionary 
learning for SPD matrices: a kernel approach, 
ECCV, 2012 

S. Jayasumana, et. al., Kernel methods on the Riemannian 
manifold of symmetric positive definite matrices, CVPR 2013. 

Sra S. Positive definite matrices and the S-
divergence. arXiv preprint arXiv:1110.1773, 
2011. 

Wang R., et. al., Covariance discriminative 
learning: A natural and efficient approach 
to image set classification, CVPR, 2012  

2011 

2012 2013 

Quang, Minh Ha, et. Al., Log-Hilbert-
Schmidt metric between positive definite 
operators on Hilbert spaces. NIPS. 2014. 

2014 



Introduction on SPD matrix 
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Integration with 
deep learning 

Li et al., Is Second-order Information 
Helpful for Large-scale Visual Recognition? 
ICCV2017 

Huang et al., A Riemannian Network for SPD 
Matrix Learning, AAAI2017 Improved Bilinear Pooling with CNN, Lin and Maji, BMVC2017 

Lin et al, Bilinear CNN Models for Fine-grained 
Visual Recognition, ICCV2015 

Ionescu et al, , Matrix Backpropagation for 
Deep Networks with Structured Layers,  
ICCV2015 

2015 

2017 

Koniusz et al., A Deeper Look at Power 
Normalizations,, CVPR 2018 

2018 
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Motivation 

Covariance Matrix 

 Covariance matrix needs to be estimated  from data 
 



Motivation 

• Covariance estimate becomes unreliable 
– High-dimensional (d) features 
– Small sample (n) 

 

 
• Existing work  

– Not consider the quality of covariance representation 
– Especially the estimate of eigenvalues 
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Motivation 
Stein Kernel 

21 



Motivation 

1. Eigenvalue estimation becomes biased when the 
number of samples is inadequate 

22 



Motivation 

2. The eigenvalues are not collectively manipulated 
toward greater discrimination 

Class 1 Class 2 

23 



Let’s do a data-dependent “eigenvalue massage” 

Class 1 Class 2 

Class 1 Class 2 

Proposed method 
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adjustment 



We propose “Discriminative Covariance Representation” 

Power-based adjustment Coefficient-based adjustment 

Proposed method 

25 



-adjusted S-Divergence:  

• Power-based adjustment 

• Coefficient-based adjustment 

Discriminative Stein kernel (DSK) 

Proposed method 

26 



How to learn the optimal adjustment parameter    ?   
 
• Kernel Alignment based method 
 
• Class Separability based method 

 
• Radius-margin Bound based Framework 

Proposed method 
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Discriminative Stein kernel (DSK) 



Experimental Result 

• Brodatz texture 

• ADNI rs-fMRI • ETH-80 object 

• FERET face 

Data sets 



Experimental Result 

29 The most difficult 15 pairs of Brodatz texture data set 



Experimental Result 
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The most difficult 15 pairs of Brodatz texture data set 



DSK vs. eigenvalue estimation improvement methods 

Discussion 

[1] X. Mestre, “Improved estimation of eigenvalues and eigenvectors of covariance matrices using their 
sample estimates,” IEEE Trans. Inf. Theory, vol. 54, pp. 5113–5129, Nov. 2008. 
[2] B. Efron and C. Morris, “Multivariate empirical Bayes and estimation of covariance matrices,” Ann. 
Stat., vol. 4, pp. 22–32, 1976. 
[3] A. Ben-David and C. E. Davidson, “Eigenvalue estimation of hyper-spectral Wishart covariance matrices 
from limited number of samples,” IEEE Trans. Geosci. Remote Sens., vol. 50, pp. 4384–4396, May 2012. 

31 



• Introduction on Covariance representation 

• Our research work 

– Discriminatively Learning Covariance Representation 

– Exploring Sparse Inverse Covariance Representation 

– Moving to Kernel-matrix-based Representation (KSPD)   

– Learning KSPD in deep neural networks 

• Conclusion 



Introduction 
Applications with high dimensions but small sample issue 
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Small sample           10 ~ 300 
High dimensions     50 ~ 400 



Introduction 
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This results in singular covariance estimate, which adversely 
affects representation.  

How to address this situation? 
 

Data + Prior knowledge 
 
 
 
    
             Explore the underlying structure of visual features 



Proposed SICE representation 
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Structure sparsity in skeletal human action recognition 
 
• Only a small number of joints are directly linked. 

• How to represent such direct links? 

Sparse Inverse Covariance Estimation  
(SICE) 



Proposed SICE representation 
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Proposed SICE representation 

37 

Properties of SICE representation: 
 
• is guaranteed to be nonsingular 

 
• reduces over-fitting, giving more reliable representation 

 
• Measures the partial correlation, allowing the sparsity 

prior to be conveniently imposed 
 
 



Application to Skeletal Action Recognition 
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Application to Skeletal Action Recognition 



Application to other tasks 

40 

The principle of ``Bet on sparsity'' 
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Introduction 

Again, look into Covariance representation 
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…
 



Introduction 

Again, look into Covariance representation 
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…
 

i-th feature j-th feature 

Just a linear kernel function! 



Introduction 

Covariance representation 
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Resulting issues: 
 
• Only modeling linear correlation of features.  

 
• A single, fixed representation form. 

 
• Unreliable or even singular covariance estimate.  



Proposed kernel-matrix representation 
Let’s use a kernel matrix instead 
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Advantages: 

• Model nonlinear relationship between features; 

• For many kernels, M is guaranteed to be nonsingular, no matter 
what the feature dimensions and sample size are.  

• Maintain the size of covariance representation and the 
computational load. 

Covariance 

SPD Matrix! 



Application to Skeletal Action Recognition 
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Application to Skeletal Action Recognition 
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Application to Object Recognition 
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Application to Deep Learning Features 
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Alex Net (F7) VGG-19 Net
(Conv5)

Fisher Vector
(CVPR15)
Cov-RP

Ker-RP (RBF)

Comparison on MIT Indoor Scenes Data Set 
(Classification accuracy in percentage) 

Presenter
Presentation Notes
TrainImages.txt: contains the file names of each training image. Total 67*80 (5360) images�TestImages.txt: contains the file names of each test image. Total 67*20 (1340) images



Discussion 

SICE vs. Kernel matrix: which is better? 
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Discussion 
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SICE vs. Kernel matrix representation: which is better? 
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– Moving to Kernel-matrix-based Representation (KSPD)   

– Learning KSPD in deep neural networks 

• Conclusion 



Covariance representation 

Integration with Deep Learning 

Bilinear CNN Models for Fine-grained Visual Recognition, Lin et al, ICCV2015 



Covariance representation 

Integration with Deep Learning 

Matrix Backpropagation for Deep Networks with Structured Layers,  
Ionescu et al, ICCV2015 



Covariance representation 

Integration with Deep Learning 

Improved Bilinear Pooling with CNN, Lin and Maji, BMVC2017 



Covariance representation 

Integration with Deep Learning 

Is Second-order Information Helpful for Large-scale Visual Recognition?, 
Li et al., ICCV2017 



Proposed DeepKSPD 

Motivation 

57 

 
 

 The kernel-matrix-based SPD representation  
 has not been developed upon deep local descriptors  
 has not been jointly learned via deep learning 
 

 Existing matrix backpropagation for learning covariance-
representation via deep networks  
 encounters numerical stability issue 



Proposed DeepKSPD 

Architecture and layers  

58 



Proposed DeepKSPD 
Matrix backpropagation  

59 



Proposed DeepKSPD 
Matrix backpropagation  

60 

H = f(K) on the kernel matrix K       
 
 
 

~ ? 



Proposed DeepKSPD 

Existing matrix backpropagation 

Matrix Backpropagation for Deep Networks with Structured Layers,  Ionescu et al, ICCV2015 



Proposed DeepKSPD 

Result from the literature of Operator Theory (1951) 



Proposed DeepKSPD 

Existing matrix backpropagation (Ionescu et al, ICCV2015) 

Proposed matrix backpropagation 

What is their relationship? 



Proposed DeepKSPD 

Generalise to matrix α-rooting normalisation 



Experimental Result 

Fine-grained Image Recognition 



Experimental Result 

Fine-grained Image Recognition 



Experimental Result 

Numerical stability of backpropagation 



Experimental Result 

DeepKSPD vs DeepCOV 



Experimental Result 

Ablation study  
• Learning width θ in the GRBF kernel 
• Learning α in matrix α-rooting normalisation 



Research trend on learning SPD representation 

• Consider higher-order feature relationship 

Kernel Pooling for Convolutional Neural Networks, Cui et al, CVPR2017  



Research trend on learning SPD representation 

• Improve the computational efficiency  

(d) Low-rank Bilinear Pooling for Fine-Grained Classification, Kong et al, CVPR2017  

(c) Compact Bilinear Pooling, Gao et al, CVPR2016  

Statistically-motivated Second-order Pooling, Yu and Salzmann, ECCV2018 



Conclusion 
• Discriminative Stein kernel to address two issues in 

covariance representation 
• SICE representation to incorporate structure sparsity 
• Kernel matrix representation to move beyond linear, fixed 

covariance representation 
• End-to-end deep learning of KSPD representation 

 1. J. Zhang, L. Wang, L. Zhou, and W. Li, Learning Discriminative Stein Kernel 
for SPD Matrices and Its Applications, IEEE Transactions on Neural Networks 
and Learning Systems (TNNLS), Vol. 27, Issue 5, pp. 1020-1033, May 2016. 
 

2. J. Zhang, L. Wang, L. Zhou, and W. Li, Exploiting Structure Sparsity for 
Covariance-based Visual Representation, arXiv:1610.08619 [cs.CV].  
 

3. L. Wang, J. Zhang, L. Zhou, C. Tang and W. Li, Beyond Covariance: Feature 
Representation with Nonlinear Kernel Matrices, IEEE International Conference 
on Computer Vision (ICCV), December 2015. 
 

4. M. Engin, L. Wang, L. Zhou, and X. Liu, DeepKSPD: Learning Kernel-matrix-
based SPD Representation for Fine-grained Image Recognition, The 15th 
European Conference on Computer Vision (ECCV), September 2018. 



Conclusion 

• Better understand SPD-matrix-based representation 
– What is it modelling, relationship to other pooling schemes? 

• Learn the optimal SPD representation from data 
– Optimisation on manifold, kernel learning, prior knowledge?  

• Computational issue 
– Deal with high-dimensional features and large data set? 

• Beyond SPD representation  
– Rectangular matrix  
– Higher order information 
– Spatial or temporal order   

On-going Issues 



Other related publications 

74 

• J. Zhang, L. Zhou and L. Wang, Subject-adaptive Integration of Multiple SICE 
Brain Networks with Different Sparsity, Pattern Recognition, 63 642-652, 2017. 
 

• L. Zhou, L. Wang, J. Zhang, Y. Shi and Y. Gao, Revisiting Distance Metric 
Learning for SPD Matrix based Visual Representation, IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition (CVPR), July 2017. 

 
• L. Zhou, L. Wang, L. Liu, P. Ogunbona, and D. Shen, Learning Discriminative 

Bayesian Networks from High-dimensional Continuous Neuroimaging Data, 
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 
Volume: 38 , Issue: 11 , Nov. 1 2016 .  

 
•  J. Zhang, L. Zhou, L. Wang, and W. Li, Functional Brain Network Classification 

With Compact Representation of SICE Matrices, IEEE Transactions on 
Biomedical Engineering, 62 (6), 1623-1634, 2015. 

 
•  L. Zhou, L. Wang and P. Ogunbona. Discriminative Sparse Inverse Covariance 

Matrix: Application in Brain Functional Network Classification, IEEE Computer 
Society Conference on Computer Vision and Pattern Recognition (CVPR), 
June 2014 
 

• L. Zhou, L. Wang, L. Liu, P. Ogunbona and D. Shen. Max-margin Based 
Learning for Discriminative Bayesian Network from Neuroimaging Data, In the 
17th International Conference on MICCAI, September 2014. 



Q&A 

     Images Courtesy of Google Image 
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